Cargando…

Information Theory and Statistical Learning

Information Theory and Statistical Learning presents theoretical and practical results about information theoretic methods used in the context of statistical learning. The book will present a comprehensive overview of the large range of different methods that have been developed in a multitude of co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Emmert-Streib, Frank (Editor ), Dehmer, Matthias (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-84816-7
003 DE-He213
005 20220119083113.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387848167  |9 978-0-387-84816-7 
024 7 |a 10.1007/978-0-387-84816-7  |2 doi 
050 4 |a QA268 
050 4 |a Q350-390 
072 7 |a GPJ  |2 bicssc 
072 7 |a GPF  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a GPJ  |2 thema 
072 7 |a GPF  |2 thema 
082 0 4 |a 003.54  |2 23 
245 1 0 |a Information Theory and Statistical Learning  |h [electronic resource] /  |c edited by Frank Emmert-Streib, Matthias Dehmer. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2009. 
300 |a X, 439 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Algorithmic Probability: Theory and Applications -- Model Selection and Testing by the MDL Principle -- Normalized Information Distance -- The Application of Data Compression-Based Distances to Biological Sequences -- MIC: Mutual Information Based Hierarchical Clustering -- A Hybrid Genetic Algorithm for Feature Selection Based on Mutual Information -- Information Approach to Blind Source Separation and Deconvolution -- Causality in Time Series: Its Detection and Quantification by Means of Information Theory -- Information Theoretic Learning and Kernel Methods -- Information-Theoretic Causal Power -- Information Flows in Complex Networks -- Models of Information Processing in the Sensorimotor Loop -- Information Divergence Geometry and the Application to Statistical Machine Learning -- Model Selection and Information Criterion -- Extreme Physical Information as a Principle of Universal Stability -- Entropy and Cloning Methods for Combinatorial Optimization, Sampling and Counting Using the Gibbs Sampler. 
520 |a Information Theory and Statistical Learning presents theoretical and practical results about information theoretic methods used in the context of statistical learning. The book will present a comprehensive overview of the large range of different methods that have been developed in a multitude of contexts. Each chapter is written by an expert in the field. The book is intended for an interdisciplinary readership working in machine learning, applied statistics, artificial intelligence, biostatistics, computational biology, bioinformatics, web mining or related disciplines. Advance Praise for Information Theory and Statistical Learning: "A new epoch has arrived for information sciences to integrate various disciplines such as information theory, machine learning, statistical inference, data mining, model selection etc. I am enthusiastic about recommending the present book to researchers and students, because it summarizes most of these new emerging subjects and methods, which are otherwise scattered in many places." -- Shun-ichi Amari, RIKEN Brain Science Institute, Professor-Emeritus at the University of Tokyo. 
650 0 |a Coding theory. 
650 0 |a Information theory. 
650 0 |a Artificial intelligence. 
650 0 |a Computer science. 
650 0 |a Computer science-Mathematics. 
650 0 |a Telecommunication. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Coding and Information Theory. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Control, Robotics, Automation. 
700 1 |a Emmert-Streib, Frank.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Dehmer, Matthias.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387571492 
776 0 8 |i Printed edition:  |z 9781441946508 
776 0 8 |i Printed edition:  |z 9780387848150 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-84816-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)