Cargando…

Data Mining for Business Applications

Data Mining for Business Applications presents state-of-the-art data mining research and development related to methodologies, techniques, approaches and successful applications. The contributions of this book mark a paradigm shift from "data-centered pattern mining" to "domain-driven...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Cao, Longbing (Editor ), Yu, Philip S. (Editor ), Zhang, Chengqi (Editor ), Zhang, Huaifeng (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-79420-4
003 DE-He213
005 20220120131144.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387794204  |9 978-0-387-79420-4 
024 7 |a 10.1007/978-0-387-79420-4  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Data Mining for Business Applications  |h [electronic resource] /  |c edited by Longbing Cao, Philip S. Yu, Chengqi Zhang, Huaifeng Zhang. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2009. 
300 |a XX, 302 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Domain Driven KDD Methodology -- to Domain Driven Data Mining -- Post-processing Data Mining Models for Actionability -- On Mining Maximal Pattern-Based Clusters -- Role of Human Intelligence in Domain Driven Data Mining -- Ontology Mining for Personalized Search -- Novel KDD Domains & Techniques -- Data Mining Applications in Social Security -- Security Data Mining: A Survey Introducing Tamper-Resistance -- A Domain Driven Mining Algorithm on Gene Sequence Clustering -- Domain Driven Tree Mining of Semi-structured Mental Health Information -- Text Mining for Real-time Ontology Evolution -- Microarray Data Mining: Selecting Trustworthy Genes with Gene Feature Ranking -- Blog Data Mining for Cyber Security Threats -- Blog Data Mining: The Predictive Power of Sentiments -- Web Mining: Extracting Knowledge from the World Wide Web -- DAG Mining for Code Compaction -- A Framework for Context-Aware Trajectory -- Census Data Mining for Land Use Classification -- Visual Data Mining for Developing Competitive Strategies in Higher Education -- Data Mining For Robust Flight Scheduling -- Data Mining for Algorithmic Asset Management. 
520 |a Data Mining for Business Applications presents state-of-the-art data mining research and development related to methodologies, techniques, approaches and successful applications. The contributions of this book mark a paradigm shift from "data-centered pattern mining" to "domain-driven actionable knowledge discovery (AKD)" for next-generation KDD research and applications. The contents identify how KDD techniques can better contribute to critical domain problems in practice, and strengthen business intelligence in complex enterprise applications. The volume also explores challenges and directions for future data mining research and development in the dialogue between academia and business. Part I centers on developing workable AKD methodologies, including: domain-driven data mining post-processing rules for actions domain-driven customer analytics the role of human intelligence in AKD maximal pattern-based cluster ontology mining Part II focuses on novel KDD domains and the corresponding techniques, exploring the mining of emergent areas and domains such as: social security data community security data gene sequences mental health information traditional Chinese medicine data cancer related data blog data sentiment information web data procedures moving object trajectories land use mapping higher education data flight scheduling algorithmic asset management Researchers, practitioners and university students in the areas of data mining and knowledge discovery, knowledge engineering, human-computer interaction, artificial intelligence, intelligent information processing, decision support systems, knowledge management, and KDD project management are sure to find this a practical and effective means of enhancing their understanding of and using data mining in their own projects. 
650 0 |a Data mining. 
650 0 |a Strategic planning. 
650 0 |a Leadership. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Artificial intelligence. 
650 0 |a Computer science. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Business Strategy and Leadership. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Models of Computation. 
700 1 |a Cao, Longbing.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Yu, Philip S.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zhang, Chengqi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zhang, Huaifeng.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387571010 
776 0 8 |i Printed edition:  |z 9781441946355 
776 0 8 |i Printed edition:  |z 9780387794198 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-79420-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)