Cargando…

Introduction to Nonparametric Estimation

Methods of nonparametric estimation are located at the core of modern statistical science. The aim of this book is to give a short but mathematically self-contained introduction to the theory of nonparametric estimation. The emphasis is on the construction of optimal estimators; therefore the concep...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tsybakov, Alexandre B. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-79052-7
003 DE-He213
005 20220120213015.0
007 cr nn 008mamaa
008 110402s2009 xxu| s |||| 0|eng d
020 |a 9780387790527  |9 978-0-387-79052-7 
024 7 |a 10.1007/b13794  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Tsybakov, Alexandre B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Nonparametric Estimation  |h [electronic resource] /  |c by Alexandre B. Tsybakov. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a X, 214 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X 
505 0 |a Nonparametric estimators -- Lower bounds on the minimax risk -- Asymptotic efficiency and adaptation. 
520 |a Methods of nonparametric estimation are located at the core of modern statistical science. The aim of this book is to give a short but mathematically self-contained introduction to the theory of nonparametric estimation. The emphasis is on the construction of optimal estimators; therefore the concepts of minimax optimality and adaptivity, as well as the oracle approach, occupy the central place in the book. This is a concise text developed from lecture notes and ready to be used for a course on the graduate level. The main idea is to introduce the fundamental concepts of the theory while maintaining the exposition suitable for a first approach in the field. Therefore, the results are not always given in the most general form but rather under assumptions that lead to shorter or more elegant proofs. The book has three chapters. Chapter 1 presents basic nonparametric regression and density estimators and analyzes their properties. Chapter 2 is devoted to a detailed treatment of minimax lower bounds. Chapter 3 develops more advanced topics: Pinsker's theorem, oracle inequalities, Stein shrinkage, and sharp minimax adaptivity. 
650 0 |a Statistics . 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Pattern recognition systems. 
650 0 |a Econometrics. 
650 0 |a Signal processing. 
650 0 |a Probabilities. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Econometrics. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Probability Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441927095 
776 0 8 |i Printed edition:  |z 9780387570648 
776 0 8 |i Printed edition:  |z 9780387790510 
830 0 |a Springer Series in Statistics,  |x 2197-568X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b13794  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)