Cargando…

Neuronal Noise

Neuronal Noise combines experimental, theoretical and computational results to show how noise is inherent to neuronal activity, and how noise can be important for neuronal computations.  The book covers many aspects of noise in neurons, with an emphasis on the largest source of noise: synaptic noise...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Destexhe, Alain (Autor), Rudolph-Lilith, Michelle (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Springer Series in Computational Neuroscience, 8
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-79020-6
003 DE-He213
005 20220127103151.0
007 cr nn 008mamaa
008 120105s2012 xxu| s |||| 0|eng d
020 |a 9780387790206  |9 978-0-387-79020-6 
024 7 |a 10.1007/978-0-387-79020-6  |2 doi 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
072 7 |a PSAN  |2 thema 
082 0 4 |a 612.8  |2 23 
100 1 |a Destexhe, Alain.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Neuronal Noise  |h [electronic resource] /  |c by Alain Destexhe, Michelle Rudolph-Lilith. 
250 |a 1st ed. 2012. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2012. 
300 |a XVIII, 458 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Neuroscience,  |x 2197-1919 ;  |v 8 
505 0 |a 1 Introduction -- 2 Basics -- 3 Synaptic noise -- 4 Models of synaptic noise -- 5 Integrative properties in the presence of noise6 Recreating synaptic noise using dynamic-clamp -- 7 The mathematics of synaptic noise -- 8 Analyzing synaptic noise -- 9 Case studies -- 10 Conclusions and perspectives A Numerical integration of stochastic differential equations -- B Distributed Generator Algorithm -- C The Fokker-Planck formalism -- D The RT-NEURON interface for dynamic-clamp -- References -- Index. 
520 |a Neuronal Noise combines experimental, theoretical and computational results to show how noise is inherent to neuronal activity, and how noise can be important for neuronal computations.  The book covers many aspects of noise in neurons, with an emphasis on the largest source of noise: synaptic noise. It provides students and young researchers with an overview of the important methods and concepts that have emerged from research in this area. It also provides the specialist with a summary of the large body of sometimes contrasting experimental data, and different theories proposed to explore the computational power that various forms of "noise" can confer to neurons. 
650 0 |a Neurosciences. 
650 1 4 |a Neuroscience. 
700 1 |a Rudolph-Lilith, Michelle.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387790190 
776 0 8 |i Printed edition:  |z 9780387570624 
776 0 8 |i Printed edition:  |z 9781489990297 
830 0 |a Springer Series in Computational Neuroscience,  |x 2197-1919 ;  |v 8 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-79020-6  |z Texto Completo 
912 |a ZDB-2-SBL 
912 |a ZDB-2-SXB 
950 |a Biomedical and Life Sciences (SpringerNature-11642) 
950 |a Biomedical and Life Sciences (R0) (SpringerNature-43708)