|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-0-387-79020-6 |
003 |
DE-He213 |
005 |
20220127103151.0 |
007 |
cr nn 008mamaa |
008 |
120105s2012 xxu| s |||| 0|eng d |
020 |
|
|
|a 9780387790206
|9 978-0-387-79020-6
|
024 |
7 |
|
|a 10.1007/978-0-387-79020-6
|2 doi
|
050 |
|
4 |
|a RC321-580
|
072 |
|
7 |
|a PSAN
|2 bicssc
|
072 |
|
7 |
|a MED057000
|2 bisacsh
|
072 |
|
7 |
|a PSAN
|2 thema
|
082 |
0 |
4 |
|a 612.8
|2 23
|
100 |
1 |
|
|a Destexhe, Alain.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Neuronal Noise
|h [electronic resource] /
|c by Alain Destexhe, Michelle Rudolph-Lilith.
|
250 |
|
|
|a 1st ed. 2012.
|
264 |
|
1 |
|a New York, NY :
|b Springer US :
|b Imprint: Springer,
|c 2012.
|
300 |
|
|
|a XVIII, 458 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Springer Series in Computational Neuroscience,
|x 2197-1919 ;
|v 8
|
505 |
0 |
|
|a 1 Introduction -- 2 Basics -- 3 Synaptic noise -- 4 Models of synaptic noise -- 5 Integrative properties in the presence of noise6 Recreating synaptic noise using dynamic-clamp -- 7 The mathematics of synaptic noise -- 8 Analyzing synaptic noise -- 9 Case studies -- 10 Conclusions and perspectives A Numerical integration of stochastic differential equations -- B Distributed Generator Algorithm -- C The Fokker-Planck formalism -- D The RT-NEURON interface for dynamic-clamp -- References -- Index.
|
520 |
|
|
|a Neuronal Noise combines experimental, theoretical and computational results to show how noise is inherent to neuronal activity, and how noise can be important for neuronal computations. The book covers many aspects of noise in neurons, with an emphasis on the largest source of noise: synaptic noise. It provides students and young researchers with an overview of the important methods and concepts that have emerged from research in this area. It also provides the specialist with a summary of the large body of sometimes contrasting experimental data, and different theories proposed to explore the computational power that various forms of "noise" can confer to neurons.
|
650 |
|
0 |
|a Neurosciences.
|
650 |
1 |
4 |
|a Neuroscience.
|
700 |
1 |
|
|a Rudolph-Lilith, Michelle.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9780387790190
|
776 |
0 |
8 |
|i Printed edition:
|z 9780387570624
|
776 |
0 |
8 |
|i Printed edition:
|z 9781489990297
|
830 |
|
0 |
|a Springer Series in Computational Neuroscience,
|x 2197-1919 ;
|v 8
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-0-387-79020-6
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SBL
|
912 |
|
|
|a ZDB-2-SXB
|
950 |
|
|
|a Biomedical and Life Sciences (SpringerNature-11642)
|
950 |
|
|
|a Biomedical and Life Sciences (R0) (SpringerNature-43708)
|