Cargando…

Modern Multivariate Statistical Techniques Regression, Classification, and Manifold Learning /

Remarkable advances in computation and data storage and the ready availability of huge data sets have been the keys to the growth of the new disciplines of data mining and machine learning, while the enormous success of the Human Genome Project has opened up the field of bioinformatics. These exciti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Izenman, Alan J. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Springer Texts in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-78189-1
003 DE-He213
005 20220115220620.0
007 cr nn 008mamaa
008 130323s2008 xxu| s |||| 0|eng d
020 |a 9780387781891  |9 978-0-387-78189-1 
024 7 |a 10.1007/978-0-387-78189-1  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Izenman, Alan J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Modern Multivariate Statistical Techniques  |h [electronic resource] :  |b Regression, Classification, and Manifold Learning /  |c by Alan J. Izenman. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XXV, 733 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 2197-4136 
505 0 |a and Preview -- Data and Databases -- Random Vectors and Matrices -- Nonparametric Density Estimation -- Model Assessment and Selection in Multiple Regression -- Multivariate Regression -- Linear Dimensionality Reduction -- Linear Discriminant Analysis -- Recursive Partitioning and Tree-Based Methods -- Artificial Neural Networks -- Support Vector Machines -- Cluster Analysis -- Multidimensional Scaling and Distance Geometry -- Committee Machines -- Latent Variable Models for Blind Source Separation -- Nonlinear Dimensionality Reduction and Manifold Learning -- Correspondence Analysis. 
520 |a Remarkable advances in computation and data storage and the ready availability of huge data sets have been the keys to the growth of the new disciplines of data mining and machine learning, while the enormous success of the Human Genome Project has opened up the field of bioinformatics. These exciting developments, which led to the introduction of many innovative statistical tools for high-dimensional data analysis, are described here in detail. The author takes a broad perspective; for the first time in a book on multivariate analysis, nonlinear methods are discussed in detail as well as linear methods. Techniques covered range from traditional multivariate methods, such as multiple regression, principal components, canonical variates, linear discriminant analysis, factor analysis, clustering, multidimensional scaling, and correspondence analysis, to the newer methods of density estimation, projection pursuit, neural networks, multivariate reduced-rank regression, nonlinear manifold learning, bagging, boosting, random forests, independent component analysis, support vector machines, and classification and regression trees. Another unique feature of this book is the discussion of database management systems. This book is appropriate for advanced undergraduate students, graduate students, and researchers in statistics, computer science, artificial intelligence, psychology, cognitive sciences, business, medicine, bioinformatics, and engineering. Familiarity with multivariable calculus, linear algebra, and probability and statistics is required. The book presents a carefully-integrated mixture of theory and applications, and of classical and modern multivariate statistical techniques, including Bayesian methods. There are over 60 interesting data sets used as examples in the book, over 200 exercises, and many color illustrations and photographs. Alan J. Izenman is Professor of Statistics and Director of the Center for Statistical and Information Science at Temple University. He has also been on the faculties of Tel-Aviv University and Colorado State University, and has held visiting appointments at the University of Chicago, the University of Minnesota, Stanford University, and the University of Edinburgh. He served as Program Director of Statistics and Probability at the National Science Foundation and was Program Chair of the 2007 Interface Symposium on Computer Science and Statistics with conference theme of Systems Biology. He is a Fellow of the American Statistical Association.   . 
650 0 |a Probabilities. 
650 0 |a Computer software. 
650 0 |a Data mining. 
650 0 |a Statistics . 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Probability Theory. 
650 2 4 |a Mathematical Software. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Automated Pattern Recognition. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387569833 
776 0 8 |i Printed edition:  |z 9780387781884 
776 0 8 |i Printed edition:  |z 9781493938322 
830 0 |a Springer Texts in Statistics,  |x 2197-4136 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-78189-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)