Cargando…

Bayesian Reliability

Bayesian Reliability presents modern methods and techniques for analyzing reliability data from a Bayesian perspective. The adoption and application of Bayesian methods in virtually all branches of science and engineering have significantly increased over the past few decades. This increase is large...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hamada, Michael S. (Autor), Wilson, Alyson (Autor), Reese, C. Shane (Autor), Martz, Harry (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-77950-8
003 DE-He213
005 20220115032321.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387779508  |9 978-0-387-77950-8 
024 7 |a 10.1007/978-0-387-77950-8  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Hamada, Michael S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bayesian Reliability  |h [electronic resource] /  |c by Michael S. Hamada, Alyson Wilson, C. Shane Reese, Harry Martz. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XVI, 436 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X 
505 0 |a Reliability Concepts -- Bayesian Inference -- Advanced Bayesian Modeling and Computational Methods -- Component Reliability -- System Reliability -- Repairable System Reliability -- Regression Models in Reliability -- Using Degradation Data to Assess Reliability -- Planning for Reliability Data Collection -- Assurance Testing. 
520 |a Bayesian Reliability presents modern methods and techniques for analyzing reliability data from a Bayesian perspective. The adoption and application of Bayesian methods in virtually all branches of science and engineering have significantly increased over the past few decades. This increase is largely due to advances in simulation-based computational tools for implementing Bayesian methods. The authors extensively use such tools throughout this book, focusing on assessing the reliability of components and systems with particular attention to hierarchical models and models incorporating explanatory variables. Such models include failure time regression models, accelerated testing models, and degradation models. The authors pay special attention to Bayesian goodness-of-fit testing, model validation, reliability test design, and assurance test planning. Throughout the book, the authors use Markov chain Monte Carlo (MCMC) algorithms for implementing Bayesian analyses--algorithms that make the Bayesian approach to reliability computationally feasible and conceptually straightforward. This book is primarily a reference collection of modern Bayesian methods in reliability for use by reliability practitioners. There are more than 70 illustrative examples, most of which utilize real-world data. This book can also be used as a textbook for a course in reliability and contains more than 160 exercises. Noteworthy highlights of the book include Bayesian approaches for the following: Goodness-of-fit and model selection methods Hierarchical models for reliability estimation Fault tree analysis methodology that supports data acquisition at all levels in the tree Bayesian networks in reliability analysis Analysis of failure count and failure time data collected from repairable systems, and the assessment of various related performance criteria < Analysis of nondestructive and destructive degradation data Optimal design of reliability experiments Hierarchical reliability assurance testing Dr. Michael S. Hamada is a Technical Staff Member in the Statistical Sciences Group at Los Alamos National Laboratory and is a Fellow of the American Statistical Association. Dr. Alyson G. Wilson is a Technical Staff Member in the Statistical Sciences Group at Los Alamos National Laboratory. Dr. C. Shane Reese is an Associate Professor in the Department of Statistics at Brigham Young University. Dr. Harry F. Martz is retired from the Statistical Sciences Group at Los Alamos National Laboratory and is a Fellow of the American Statistical Association. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Security systems. 
650 1 4 |a Probability Theory. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Security Science and Technology. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Wilson, Alyson.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Reese, C. Shane.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Martz, Harry.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387569666 
776 0 8 |i Printed edition:  |z 9781441926739 
776 0 8 |i Printed edition:  |z 9780387779485 
830 0 |a Springer Series in Statistics,  |x 2197-568X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-77950-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)