Cargando…

Probability Measures on Semigroups Convolution Products, Random Walks and Random Matrices /

Semigroups are very general structures and scientists often come across them in various contexts in science and engineering. In this second edition of Probability Measures on Semigroups, first published in the University Series in Mathematics in 1996, the authors present the theory of weak convergen...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Högnäs, Göran (Autor), Mukherjea, Arunava (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2011.
Edición:2nd ed. 2011.
Colección:Probability and Its Applications
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-77548-7
003 DE-He213
005 20220114110228.0
007 cr nn 008mamaa
008 101109s2011 xxu| s |||| 0|eng d
020 |a 9780387775487  |9 978-0-387-77548-7 
024 7 |a 10.1007/978-0-387-77548-7  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Högnäs, Göran.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Probability Measures on Semigroups  |h [electronic resource] :  |b Convolution Products, Random Walks and Random Matrices /  |c by Göran Högnäs, Arunava Mukherjea. 
250 |a 2nd ed. 2011. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 430 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and Its Applications 
505 0 |a Semigroups -- Probability Measures on Topological Semigroups -- Random Walks on Semigroups -- Random Matrices -- Index. 
520 |a Semigroups are very general structures and scientists often come across them in various contexts in science and engineering. In this second edition of Probability Measures on Semigroups, first published in the University Series in Mathematics in 1996, the authors present the theory of weak convergence of convolution products of probability measures on semigroups, the theory of random walks on semigroups, and their applications to products of random matrices. They examine the essentials of abstract semigroup theory and its application to concrete semigroups of matrices. They present results on weak convergence, random walks, random matrices using semigroup ideas that for the most part are complete and best possible. Still, as the authors point out, there are other results that remain to be completed. These are all mentioned in the notes and comments at the end of each chapter, and will keep the readership of this book enthusiastic and interested for some time to come. Apart from corrections of several errors, new results have been added in the main text and in the appendices; the references, all notes and comments at the end of each chapter have been updated, and exercises have been added. This volume is suitable for a one semester course on semigroups and it could be used as a main text or supplementary material for courses focusing on probability on algebraic structures or weak convergence. It is ideally suited to graduate students in mathematics, and in other fields such as engineering and sciences with an interest in probability. Students in statistics using advance probability will also find it useful. 'A well-written book...This is elegant mathematics, motivated by examples and presented in an accessible way that engages the reader.' International Statistics Institute, December 1996 'This beautiful book...guides the reader through the most important developments...a valuable addition to the library of the probabilist, and a must for anybody interested in probability on algebraic structures.' Zentralblatt für Mathematik und ihre Grenzgebiete-Mathematical Abstracts 'This well-written volume, by two of the most successful workers in the field....deserves to become the standard introduction for beginning researchers in this field.' Journal of the Royal Statistical Society. 
650 0 |a Probabilities. 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Mathematical analysis. 
650 1 4 |a Probability Theory. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Analysis. 
700 1 |a Mukherjea, Arunava.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387569109 
776 0 8 |i Printed edition:  |z 9781461427322 
776 0 8 |i Printed edition:  |z 9780387775470 
830 0 |a Probability and Its Applications 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-77548-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)