Cargando…

Dynamic Linear Models with R

State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Petris, Giovanni (Autor), Petrone, Sonia (Autor), Campagnoli, Patrizia (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Use R!,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-77238-7
003 DE-He213
005 20220116183628.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387772387  |9 978-0-387-77238-7 
024 7 |a 10.1007/b135794  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Petris, Giovanni.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dynamic Linear Models with R  |h [electronic resource] /  |c by Giovanni Petris, Sonia Petrone, Patrizia Campagnoli. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a XIII, 252 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Use R!,  |x 2197-5744 
505 0 |a Introduction: basic notions about Bayesian inference -- Dynamic linear models -- Model specification -- Models with unknown parameters -- Sequential Monte Carlo methods. 
520 |a State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed. Giovanni Petris is Associate Professor at the University of Arkansas. He has published many articles on time series analysis, Bayesian methods, and Monte Carlo techniques, and has served on National Science Foundation review panels. He regularly teaches courses on time series analysis at various universities in the US and in Italy. An active participant on the R mailing lists, he has developed and maintains a couple of contributed packages. Sonia Petrone is Associate Professor of Statistics at Bocconi University,Milano. She has published research papers in top journals in the areas of Bayesian inference, Bayesian nonparametrics, and latent variables models. She is interested in Bayesian nonparametric methods for dynamic systems and state space models and is an active member of the International Society of Bayesian Analysis. Patrizia Campagnoli received her PhD in Mathematical Statistics from the University of Pavia in 2002. She was Assistant Professor at the University of Milano-Bicocca and currently works for a financial software company. 
650 0 |a Statistics . 
650 1 4 |a Statistical Theory and Methods. 
700 1 |a Petrone, Sonia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Campagnoli, Patrizia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387568720 
776 0 8 |i Printed edition:  |z 9780387772370 
830 0 |a Use R!,  |x 2197-5744 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b135794  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)