Cargando…

Generalized Measure Theory

This comprehensive text examines the relatively new mathematical area of generalized measure theory. This area expands classical measure theory by abandoning the requirement of additivity and replacing it with various weaker requirements. Each of these weaker requirements characterizes a class of no...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Wang, Zhenyuan (Autor), Klir, George J. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:IFSR International Series in Systems Science and Systems Engineering, 25
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-76852-6
003 DE-He213
005 20220115032434.0
007 cr nn 008mamaa
008 110413s2009 xxu| s |||| 0|eng d
020 |a 9780387768526  |9 978-0-387-76852-6 
024 7 |a 10.1007/978-0-387-76852-6  |2 doi 
050 4 |a QA312-312.5 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKL  |2 thema 
082 0 4 |a 515.42  |2 23 
100 1 |a Wang, Zhenyuan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Generalized Measure Theory  |h [electronic resource] /  |c by Zhenyuan Wang, George J. Klir. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2009. 
300 |a XVI, 384 p. 25 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a IFSR International Series in Systems Science and Systems Engineering,  |x 2698-5497 ;  |v 25 
505 0 |a Preliminaries -- Basic Ideas of Generalized Measure Theory -- Special Areas of Generalized Measure Theory -- Extensions -- Structural Characteristics for Set Functions -- Measurable Functions on Monotone Measure Spaces -- Integration -- Sugeno Integrals -- Pan-Integrals -- Choquet Integrals -- Upper and Lower Integrals -- Constructing General Measures -- Fuzzification of Generalized Measures and the Choquet Integral -- Applications of Generalized Measure Theory. 
520 |a This comprehensive text examines the relatively new mathematical area of generalized measure theory. This area expands classical measure theory by abandoning the requirement of additivity and replacing it with various weaker requirements. Each of these weaker requirements characterizes a class of nonadditive measures. This results in new concepts and methods that allow us to deal with many problems in a more realistic way. For example, it allows us to work with imprecise probabilities. The exposition of generalized measure theory unfolds systematically. It begins with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory. About the Authors: Zhenyuan Wang is currently a Professor in the Department of Mathematics of University of Nebraska at Omaha. His research interests have been in the areas of nonadditive measures, nonlinear integrals, probability and statistics, and data mining. He has published one book and many papers in these areas. George J. Klir is currently a Distinguished Professor of Systems Science at Binghamton University (SUNY at Binghamton). He has published 29 books and well over 300 papers in a wide range of areas. His current research interests are primarily in the areas of fuzzy systems, soft computing, and generalized information theory. 
650 0 |a Measure theory. 
650 0 |a Mathematical logic. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 1 4 |a Measure and Integration. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Systems Theory, Control . 
700 1 |a Klir, George J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387568515 
776 0 8 |i Printed edition:  |z 9781441945761 
776 0 8 |i Printed edition:  |z 9780387768519 
830 0 |a IFSR International Series in Systems Science and Systems Engineering,  |x 2698-5497 ;  |v 25 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-76852-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)