Random Effect and Latent Variable Model Selection
Random effects and latent variable models are broadly used in analyses of multivariate data. These models can accommodate high dimensional data having a variety of measurement scales. Methods for model selection and comparison are needed in conducting hypothesis tests and in building sparse predicti...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York : Imprint: Springer,
2008.
|
Edición: | 1st ed. 2008. |
Colección: | Lecture Notes in Statistics,
192 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Random Effects Models
- Likelihood Ratio Testing for Zero Variance Components in Linear Mixed Models
- Variance Component Testing in Generalized Linear Mixed Models for Longitudinal/Clustered Data and other Related Topics
- Bayesian Model Uncertainty in Mixed Effects Models
- Bayesian Variable Selection in Generalized Linear Mixed Models
- Factor Analysis and Structural Equations Models
- A Unified Approach to Two-Level Structural Equation Models and Linear Mixed Effects Models
- Bayesian Model Comparison of Structural Equation Models
- Bayesian Model Selection in Factor Analytic Models.