Cargando…

Random Effect and Latent Variable Model Selection

Random effects and latent variable models are broadly used in analyses of multivariate data. These models can accommodate high dimensional data having a variety of measurement scales. Methods for model selection and comparison are needed in conducting hypothesis tests and in building sparse predicti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Dunson, David (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Lecture Notes in Statistics, 192
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-76721-5
003 DE-He213
005 20220114164818.0
007 cr nn 008mamaa
008 100317s2008 xxu| s |||| 0|eng d
020 |a 9780387767215  |9 978-0-387-76721-5 
024 7 |a 10.1007/978-0-387-76721-5  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
245 1 0 |a Random Effect and Latent Variable Model Selection  |h [electronic resource] /  |c edited by David Dunson. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a X, 170 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Statistics,  |x 2197-7186 ;  |v 192 
505 0 |a Random Effects Models -- Likelihood Ratio Testing for Zero Variance Components in Linear Mixed Models -- Variance Component Testing in Generalized Linear Mixed Models for Longitudinal/Clustered Data and other Related Topics -- Bayesian Model Uncertainty in Mixed Effects Models -- Bayesian Variable Selection in Generalized Linear Mixed Models -- Factor Analysis and Structural Equations Models -- A Unified Approach to Two-Level Structural Equation Models and Linear Mixed Effects Models -- Bayesian Model Comparison of Structural Equation Models -- Bayesian Model Selection in Factor Analytic Models. 
520 |a Random effects and latent variable models are broadly used in analyses of multivariate data. These models can accommodate high dimensional data having a variety of measurement scales. Methods for model selection and comparison are needed in conducting hypothesis tests and in building sparse predictive models. However, classical methods for model comparison are not well justified in such settings. This book presents state of the art methods for accommodating model uncertainty in random effects and latent variable models. It will appeal to students, applied data analysts, and experienced researchers. The chapters are based on the contributors' research, with mathematical details minimized using applications-motivated descriptions. The first part of the book focuses on frequentist likelihood ratio and score tests for zero variance components. Contributors include Xihong Lin, Daowen Zhang and Ciprian Crainiceanu. The second part focuses on Bayesian methods for random effects selection in linear mixed effects and generalized linear mixed models. Contributors include David Dunson and collaborators Bo Cai and Saki Kinney. The final part focuses on structural equation models, with Peter Bentler and Jiajuan Liang presenting a frequentist approach, Sik-Yum Lee and Xin-Yuan Song presenting a Bayesian approach based on path sampling, and Joyee Ghosh and David Dunson proposing a method for default prior specification and efficient posterior computation. David Dunson is Professor in the Department of Statistical Science at Duke University. He is an international authority on Bayesian methods for correlated data, a fellow of the American Statistical Association, and winner of the David Byar and Mortimer Spiegelman Awards. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 1 4 |a Probability Theory. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Dunson, David.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387568393 
776 0 8 |i Printed edition:  |z 9780387767208 
830 0 |a Lecture Notes in Statistics,  |x 2197-7186 ;  |v 192 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-76721-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)