Cargando…

Polytopes, Rings, and K-Theory

This book treats the interaction between discrete convex geometry, commutative ring theory, algebraic K-theory, and algebraic geometry. The basic mathematical objects are lattice polytopes, rational cones, affine monoids, the algebras derived from them, and toric varieties. The book discusses severa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bruns, Winfried (Autor), Gubeladze, Joseph (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-76356-9
003 DE-He213
005 20220115093141.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387763569  |9 978-0-387-76356-9 
024 7 |a 10.1007/b105283  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Bruns, Winfried.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Polytopes, Rings, and K-Theory  |h [electronic resource] /  |c by Winfried Bruns, Joseph Gubeladze. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a XIV, 461 p. 52 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a I Cones, monoids, and triangulations -- Polytopes, cones, and complexes -- Affine monoids and their Hilbert bases -- Multiples of lattice polytopes -- II Affine monoid algebras -- Monoid algebras -- Isomorphisms and automorphisms -- Homological properties and Hilbert functions -- Gr#x00F6;bner bases, triangulations, and Koszul algebras -- III K-theory -- Projective modules over monoid rings -- Bass#x2013;Whitehead groups of monoid rings -- Varieties. 
520 |a This book treats the interaction between discrete convex geometry, commutative ring theory, algebraic K-theory, and algebraic geometry. The basic mathematical objects are lattice polytopes, rational cones, affine monoids, the algebras derived from them, and toric varieties. The book discusses several properties and invariants of these objects, such as efficient generation, unimodular triangulations and covers, basic theory of monoid rings, isomorphism problems and automorphism groups, homological properties and enumerative combinatorics. The last part is an extensive treatment of the K-theory of monoid rings, with extensions to toric varieties and their intersection theory. This monograph has been written with a view towards graduate students and researchers who want to study the cross-connections of algebra and discrete convex geometry. While the text has been written from an algebraist's view point, also specialists in lattice polytopes and related objects will find an up-to-date discussion of affine monoids and their combinatorial structure. Though the authors do not explicitly formulate algorithms, the book takes a constructive approach wherever possible. Winfried Bruns is Professor of Mathematics at Universität Osnabrück. Joseph Gubeladze is Professor of Mathematics at San Francisco State University. 
650 0 |a Algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a K-theory. 
650 0 |a Convex geometry . 
650 0 |a Discrete geometry. 
650 1 4 |a Algebra. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a K-Theory. 
650 2 4 |a Convex and Discrete Geometry. 
700 1 |a Gubeladze, Joseph.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387567624 
776 0 8 |i Printed edition:  |z 9781441926173 
776 0 8 |i Printed edition:  |z 9780387763552 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b105283  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)