Cargando…

Asymptotic Theory of Statistics and Probability

This book is an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the im...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: DasGupta, Anirban (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Springer Texts in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-75971-5
003 DE-He213
005 20220116011044.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387759715  |9 978-0-387-75971-5 
024 7 |a 10.1007/978-0-387-75971-5  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a DasGupta, Anirban.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Asymptotic Theory of Statistics and Probability  |h [electronic resource] /  |c by Anirban DasGupta. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XXVII, 722 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 2197-4136 
505 0 |a Basic Convergence Concepts and Theorems -- Metrics, Information Theory, Convergence, and Poisson Approximations -- More General Weak and Strong Laws and the Delta Theorem -- Transformations -- More General Central Limit Theorems -- Moment Convergence and Uniform Integrability -- Sample Percentiles and Order Statistics -- Sample Extremes -- Central Limit Theorems for Dependent Sequences -- Central Limit Theorem for Markov Chains -- Accuracy of Central Limit Theorems -- Invariance Principles -- Edgeworth Expansions and Cumulants -- Saddlepoint Approximations -- U-statistics -- Maximum Likelihood Estimates -- M Estimates -- The Trimmed Mean -- Multivariate Location Parameter and Multivariate Medians -- Bayes Procedures and Posterior Distributions -- Testing Problems -- Asymptotic Efficiency in Testing -- Some General Large-Deviation Results -- Classical Nonparametrics -- Two-Sample Problems -- Goodness of Fit -- Chi-square Tests for Goodness of Fit -- Goodness of Fit with Estimated Parameters -- The Bootstrap -- Jackknife -- Permutation Tests -- Density Estimation -- Mixture Models and Nonparametric Deconvolution -- High-Dimensional Inference and False Discovery -- A Collection of Inequalities in Probability, Linear Algebra, and Analysis. 
520 |a This book is an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. The book has 34 chapters over a wide range of topics, nearly 600 exercises for practice and instruction, and another 300 worked out examples. It also includes a large compendium of 300 useful inequalities on probability, linear algebra, and analysis that are collected together from numerous sources, as an invaluable reference for researchers in statistics, probability, and mathematics. It can be used as a graduate text, as a versatile research reference, as a source for independent reading on a wide assembly of topics, and as a window to learning the latest developments in contemporary topics. The book is unique in its detailed coverage of fundamental topics such as central limit theorems in numerous setups, likelihood based methods, goodness of fit, higher order asymptotics, as well as of the most modern topics such as the bootstrap, dependent data, Bayesian asymptotics, nonparametric density estimation, mixture models, and multiple testing and false discovery. It provides extensive bibliographic references on all topics that include very recent publications. Anirban DasGupta is Professor of Statistics at Purdue University. He has also taught at the Wharton School of the University of Pennsylvania, at Cornell University, and at the University of California at San Diego. He has been on the editorial board of the Annals of Statistics since 1998 and has also served on the editorial boards of the Journal of the American Statistical Association, International Statistical Review, and the Journal of Statistical Planning and Inference. He has edited two monographs in the lecture notes monograph series of the Institute of Mathematical Statistics, is a Fellow of the Institute of Mathematical Statistics and has 70 refereed publications on theoretical statistics and probability in major journals. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 1 4 |a Probability Theory. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387521619 
776 0 8 |i Printed edition:  |z 9780387759708 
776 0 8 |i Printed edition:  |z 9781461498841 
830 0 |a Springer Texts in Statistics,  |x 2197-4136 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-75971-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)