Cargando…

Stochastic Control of Hereditary Systems and Applications

This research monograph develops the Hamilton-Jacobi-Bellman (HJB) theory through dynamic programming principle for a class of optimal control problems for stochastic hereditary differential systems. It is driven by a standard Brownian motion and with a bounded memory or an infinite but fading memor...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chang, Mou-Hsiung (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Stochastic Modelling and Applied Probability, 59
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-75816-9
003 DE-He213
005 20220118030707.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387758169  |9 978-0-387-75816-9 
024 7 |a 10.1007/978-0-387-75816-9  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Chang, Mou-Hsiung.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stochastic Control of Hereditary Systems and Applications  |h [electronic resource] /  |c by Mou-Hsiung Chang. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XVIII, 406 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Stochastic Modelling and Applied Probability,  |x 2197-439X ;  |v 59 
505 0 |a and Summary -- Stochastic Hereditary Differential Equations -- Stochastic Calculus -- Optimal Classical Control -- Optimal Stopping -- Discrete Approximations -- Option Pricing -- Hereditary Portfolio Optimization. 
520 |a This research monograph develops the Hamilton-Jacobi-Bellman (HJB) theory through dynamic programming principle for a class of optimal control problems for stochastic hereditary differential systems. It is driven by a standard Brownian motion and with a bounded memory or an infinite but fading memory. The optimal control problems treated in this book include optimal classical control and optimal stopping with a bounded memory and over finite time horizon. This book can be used as an introduction for researchers and graduate students who have a special interest in learning and entering the research areas in stochastic control theory with memories. Each chapter contains a summary. Mou-Hsiung Chang is a program manager at the Division of Mathematical Sciences for the U.S. Army Research Office. 
650 0 |a Probabilities. 
650 0 |a Differential equations. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Statistics . 
650 1 4 |a Probability Theory. 
650 2 4 |a Differential Equations. 
650 2 4 |a Control, Robotics, Automation. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387521510 
776 0 8 |i Printed edition:  |z 9781441926050 
776 0 8 |i Printed edition:  |z 9780387758053 
830 0 |a Stochastic Modelling and Applied Probability,  |x 2197-439X ;  |v 59 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-75816-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)