|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-0-387-75109-2 |
003 |
DE-He213 |
005 |
20220114145441.0 |
007 |
cr nn 008mamaa |
008 |
100301s2008 xxu| s |||| 0|eng d |
020 |
|
|
|a 9780387751092
|9 978-0-387-75109-2
|
024 |
7 |
|
|a 10.1007/978-0-387-75109-2
|2 doi
|
050 |
|
4 |
|a TA418.7-418.76
|
050 |
|
4 |
|a TA418.9.T45
|
072 |
|
7 |
|a TGM
|2 bicssc
|
072 |
|
7 |
|a TEC021040
|2 bisacsh
|
072 |
|
7 |
|a TGM
|2 thema
|
082 |
0 |
4 |
|a 620.44
|2 23
|
100 |
1 |
|
|a Pelliccione, Matthew.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Evolution of Thin Film Morphology
|h [electronic resource] :
|b Modeling and Simulations /
|c by Matthew Pelliccione, Toh-Ming Lu.
|
250 |
|
|
|a 1st ed. 2008.
|
264 |
|
1 |
|a New York, NY :
|b Springer New York :
|b Imprint: Springer,
|c 2008.
|
300 |
|
|
|a XII, 206 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Springer Series in Materials Science,
|x 2196-2812 ;
|v 108
|
505 |
0 |
|
|a Description of Thin Film Morphology -- Surface Statistics -- Self-Affine Surfaces -- Mounded Surfaces -- Continuum Surface Growth Models -- Stochastic Growth Equations -- Small World Growth Model -- Discrete Surface Growth Models -- Monte Carlo Simulations -- Solid-on-Solid Models -- Ballistic Aggregation Models -- Concluding Remarks.
|
520 |
|
|
|a Thin film deposition is the most ubiquitous and critical of the processes used to manufacture high tech devices. Morphology and microstructure of thin films directly controls their optical, magnetic, and electrical properties. This book focuses on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem both through numerical calculations based on Langevin continuum equations, and through Monte Carlo simulations based on discrete surface growth models when an analytical formulism is not convenient. Evolution of Thin-Film Morphology will be of benefit to university researchers and industrial scientists working in the areas of semiconductor processing, optical coating, plasma etching, patterning, micro-machining, polishing, tribology, and any discipline that requires an understanding of thin film growth processes. In particular, the reader will be introduced to the mathematical tools that are available to describe such a complex problem, and appreciate the utility of the various modeling methods through numerous example discussions. For beginners in the field, the text is written assuming a minimal background in mathematics and computer programming. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition.
|
650 |
|
0 |
|a Surfaces (Technology).
|
650 |
|
0 |
|a Thin films.
|
650 |
|
0 |
|a Optical materials.
|
650 |
|
0 |
|a Coatings.
|
650 |
|
0 |
|a Tribology.
|
650 |
|
0 |
|a Corrosion and anti-corrosives.
|
650 |
1 |
4 |
|a Surfaces, Interfaces and Thin Film.
|
650 |
2 |
4 |
|a Optical Materials.
|
650 |
2 |
4 |
|a Coatings.
|
650 |
2 |
4 |
|a Tribology.
|
650 |
2 |
4 |
|a Corrosion.
|
700 |
1 |
|
|a Lu, Toh-Ming.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9781441925800
|
776 |
0 |
8 |
|i Printed edition:
|z 9780387521220
|
776 |
0 |
8 |
|i Printed edition:
|z 9780387751085
|
830 |
|
0 |
|a Springer Series in Materials Science,
|x 2196-2812 ;
|v 108
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-0-387-75109-2
|z Texto Completo
|
912 |
|
|
|a ZDB-2-CMS
|
912 |
|
|
|a ZDB-2-SXC
|
950 |
|
|
|a Chemistry and Materials Science (SpringerNature-11644)
|
950 |
|
|
|a Chemistry and Material Science (R0) (SpringerNature-43709)
|