Cargando…

The Mathematical Coloring Book Mathematics of Coloring and the Colorful Life of its Creators /

I have never encountered a book of this kind. The best description of it I can give is that it is a mystery novel... I found it hard to stop reading before I finished (in two days) the whole text. Soifer engages the reader's attention not only mathematically, but emotionally and esthetically. M...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Soifer, Alexander (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-74642-5
003 DE-He213
005 20220113132757.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387746425  |9 978-0-387-74642-5 
024 7 |a 10.1007/978-0-387-74642-5  |2 doi 
050 4 |a QA297.4 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
072 7 |a PBD  |2 thema 
082 0 4 |a 511.1  |2 23 
100 1 |a Soifer, Alexander.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Mathematical Coloring Book  |h [electronic resource] :  |b Mathematics of Coloring and the Colorful Life of its Creators /  |c by Alexander Soifer. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a XXX, 607 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Merry-Go-Round -- A Story of Colored Polygons and Arithmetic Progressions -- Colored Plane -- Chromatic Number of the Plane: The Problem -- Chromatic Number of the Plane: An Historical Essay -- Polychromatic Number of the Plane and Results Near the Lower Bound -- De Bruijn-Erd?s Reduction to Finite Sets and Results Near the Lower Bound -- Polychromatic Number of the Plane and Results Near the Upper Bound -- Continuum of 6-Colorings of the Plane -- Chromatic Number of the Plane in Special Circumstances -- Measurable Chromatic Number of the Plane -- Coloring in Space -- Rational Coloring -- Coloring Graphs -- Chromatic Number of a Graph -- Dimension of a Graph -- Embedding 4-Chromatic Graphs in the Plane -- Embedding World Records -- Edge Chromatic Number of a Graph -- Carsten Thomassen's 7-Color Theorem -- Coloring Maps -- How the Four-Color Conjecture Was Born -- Victorian Comedy of Errors and Colorful Progress -- Kempe-Heawood's Five-Color Theorem and Tait's Equivalence -- The Four-Color Theorem -- The Great Debate -- How Does One Color Infinite Maps? A Bagatelle -- Chromatic Number of the Plane Meets Map Coloring: Townsend-Woodall's 5-Color Theorem -- Colored Graphs -- Paul Erd?s -- De Bruijn-Erd?s's Theorem and Its History -- Edge Colored Graphs: Ramsey and Folkman Numbers -- The Ramsey Principle -- From Pigeonhole Principle to Ramsey Principle -- The Happy End Problem -- The Man behind the Theory: Frank Plumpton Ramsey -- Colored Integers: Ramsey Theory Before Ramsey and Its AfterMath -- Ramsey Theory Before Ramsey: Hilbert's Theorem -- Ramsey Theory Before Ramsey: Schur's Coloring Solution of a Colored Problem and Its Generalizations -- Ramsey Theory before Ramsey: Van der Waerden Tells the Story of Creation -- Whose Conjecture Did Van der Waerden Prove? Two Lives Between Two Wars: Issai Schur and Pierre Joseph Henry Baudet -- Monochromatic Arithmetic Progressions: Life After Van der Waerden -- In Search of Van der Waerden: The Early Years -- In Search of Van der Waerden: The Nazi Leipzig, 1933-1945 -- In Search of Van der Waerden: The Postwar Amsterdam, 1945166 -- In Search of Van der Waerden: The Unsettling Years, 1946-1951 -- Colored Polygons: Euclidean Ramsey Theory -- Monochromatic Polygons in a 2-Colored Plane -- 3-Colored Plane, 2-Colored Space, and Ramsey Sets -- Gallai's Theorem -- Colored Integers in Service of Chromatic Number of the Plane: How O'Donnell Unified Ramsey Theory and No One Noticed -- Application of Baudet-Schur-Van der Waerden -- Application of Bergelson-Leibman's and Mordell-Faltings' Theorems -- Solution of an Erd?s Problem: O'Donnell's Theorem -- Predicting the Future -- What If We Had No Choice? -- A Glimpse into the Future: Chromatic Number of the Plane, Theorems and Conjectures -- Imagining the Real, Realizing the Imaginary -- Farewell to the Reader -- Two Celebrated Problems. 
520 |a I have never encountered a book of this kind. The best description of it I can give is that it is a mystery novel... I found it hard to stop reading before I finished (in two days) the whole text. Soifer engages the reader's attention not only mathematically, but emotionally and esthetically. May you enjoy the book as much as I did! -Branko Grünbaum University of Washington You are doing great service to the community by taking care of the past, so the things are better understood in the future. -Stanislaw P. Radziszowski, Rochester Institute of Technology They [Van der Waerden's sections] meet the highest standards of historical scholarship. -Charles C. Gillispie, Princeton University You have dug up a great deal of information - my compliments! -Dirk van Dalen, Utrecht University I have just finished reading your (second) article "in search of van der Waerden". It is a masterpiece, I could not stop reading it... Congratulations! -Janos Pach, Courant Institute of Mathematics "Mathematical Coloring Book" will (we can hope) have a great and salutary influence on all writing on mathematics in the future." -Peter D. Johnson Jr., Auburn University Just now a postman came to the door with a copy of the masterpiece of the century. I thank you and the mathematics community should thank you for years to come. You have set a standard for writing about mathematics and mathematicians that will be hard to match. -Harold W. Kuhn, Princeton University The beautiful and unique Mathematical coloring book of Alexander Soifer is another case of ``good mathematics''... and presenting mathematics as both a science and an art... It is difficult to explain how much beautiful and good mathematics is included and how much wisdom about life is given. -Peter Mihók, Mathematical Reviews. 
650 0 |a Discrete mathematics. 
650 0 |a Mathematics. 
650 0 |a History. 
650 0 |a Mathematical logic. 
650 1 4 |a Discrete Mathematics. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387566962 
776 0 8 |i Printed edition:  |z 9780387746401 
776 0 8 |i Printed edition:  |z 9781489996268 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-74642-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)