Cargando…

Applied Delay Differential Equations

Delay differential equations have numerous applications in science and engineering. This short, expository book offers a stimulating collection of examples of delay differential equations which are in use as models for a variety of phenomena in the life sciences, physics and technology, chemistry an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Erneux, Thomas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Surveys and Tutorials in the Applied Mathematical Sciences, 3
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-74372-1
003 DE-He213
005 20220118031825.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387743721  |9 978-0-387-74372-1 
024 7 |a 10.1007/978-0-387-74372-1  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Erneux, Thomas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Applied Delay Differential Equations  |h [electronic resource] /  |c by Thomas Erneux. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a XII, 204 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Surveys and Tutorials in the Applied Mathematical Sciences,  |x 2199-4773 ;  |v 3 
505 0 |a Stability -- Biology -- Bernoulli's equation -- Chemistry -- Mechanical vibrations -- Lasers -- Phase equations. 
520 |a Delay differential equations have numerous applications in science and engineering. This short, expository book offers a stimulating collection of examples of delay differential equations which are in use as models for a variety of phenomena in the life sciences, physics and technology, chemistry and economics. Avoiding mathematical proofs but offering more than one hundred illustrations, this book illustrates how bifurcation and asymptotic techniques can systematically be used to extract analytical information of physical interest. Applied Delay Differential Equations is a friendly introduction to the fast-growing field of time-delay differential equations. Written to a multi-disciplinary audience, it sets each area of science in his historical context and then guides the reader towards questions of current interest. Thomas Erneux was a professor in Applied Mathematics at Northwestern University from 1982 to 1993. He then joined the Department of Physics at the Université Libre de Bruxelles. 
650 0 |a Differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Dynamical systems. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Differential Equations. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387566801 
776 0 8 |i Printed edition:  |z 9780387743714 
830 0 |a Surveys and Tutorials in the Applied Mathematical Sciences,  |x 2199-4773 ;  |v 3 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-74372-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)