Cargando…

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis

Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification, troublesh...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kjærulff, Uffe B. (Autor), Madsen, Anders L. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Information Science and Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-74101-7
003 DE-He213
005 20220114174611.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387741017  |9 978-0-387-74101-7 
024 7 |a 10.1007/978-0-387-74101-7  |2 doi 
050 4 |a QA276.4-.45 
072 7 |a PBT  |2 bicssc 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a UFM  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Kjærulff, Uffe B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis  |h [electronic resource] /  |c by Uffe B. Kjærulff, Anders L. Madsen. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XVIII, 318 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Science and Statistics,  |x 2197-4128 
505 0 |a Fundamentals -- Networks -- Probabilities -- Probabilistic Networks -- Solving Probabilistic Networks -- Model Construction -- Eliciting the Model -- Modeling Techniques -- Data-Driven Modeling -- Model Analysis -- Conflict Analysis -- Sensitivity Analysis -- Value of Information Analysis. 
520 |a Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his/her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide. Uffe B. Kjærulff holds a PhD on probabilistic networks and is an Associate Professor of Computer Science at Aalborg University. Anders L. Madsen holds a PhD on probabilistic networks and is the CEO of HUGIN Expert A/S. 
650 0 |a Mathematical statistics-Data processing. 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Probabilities. 
650 1 4 |a Statistics and Computing. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Probability Theory. 
700 1 |a Madsen, Anders L.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387520544 
776 0 8 |i Printed edition:  |z 9781441925466 
776 0 8 |i Printed edition:  |z 9780387741000 
830 0 |a Information Science and Statistics,  |x 2197-4128 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-74101-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)