Cargando…

Symmetry Theory in Molecular Physics with Mathematica A new kind of tutorial book /

Prof. McClain has indeed produced "a new kind of tutorial book." It is written using the logic engine Mathematica, which permits concrete exploration and development of every concept involved in Symmetry Theory. The book may be read in your hand, or on a computer screen with Mathematica ru...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McClain, William (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • A tutorial on notebooks
  • A basic tutorial
  • The meaning of symmetry
  • Axioms of group theory
  • Several kinds of groups
  • The fundamental theorem
  • The multiplication table
  • Molecules
  • The point groups
  • Euler rotation matrices
  • Lie#x2019;s axis-angle rotations
  • Recognizing matrices
  • to the character table
  • The operator MakeGroup
  • Product groups
  • Naming the point groups
  • Tabulated representations of groups
  • Visualizing groups
  • Subgroups
  • Lagrange#x2019;s Theorem
  • Classes
  • Symmetry and quantum mechanics
  • Transformation of functions
  • Matrix representations of groups
  • Similar representations
  • The MakeRep operators
  • Reducible representations
  • The MakeUnitary operator
  • Schur#x2019;s reduction
  • Schur#x2019;s First Lemma
  • Schur#x2019;s Second Lemma
  • The Great Orthogonality
  • Character orthogonalities
  • Reducible rep analysis
  • The regular representation
  • Projection operators
  • Tabulated bases for representations
  • Quantum matrix elements
  • Constructing SALCs
  • Hybrid orbitals
  • Vibration analysis
  • Multiple symmetries
  • One-photon selection rules
  • Two-photon tensor projections
  • Three-photon tensor projections
  • Class sums and their products
  • Make a character table.