Cargando…

Fibonacci's De Practica Geometrie

Leonardo da Pisa, perhaps better known as Fibonacci (ca. 1170 - ca. 1240), selected the most useful parts of Greco-Arabic geometry for the book known as De practica geometrie. Beginning with the definitions and constructions found early on in Euclid's Elements, Fibonacci instructed his reader h...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hughes, Barnabas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Sources and Studies in the History of Mathematics and Physical Sciences,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-72931-2
003 DE-He213
005 20220120004219.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387729312  |9 978-0-387-72931-2 
024 7 |a 10.1007/978-0-387-72931-2  |2 doi 
050 4 |a QA21-27 
072 7 |a PBX  |2 bicssc 
072 7 |a MAT015000  |2 bisacsh 
072 7 |a PBX  |2 thema 
082 0 4 |a 510.9  |2 23 
100 1 |a Hughes, Barnabas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fibonacci's De Practica Geometrie  |h [electronic resource] /  |c by Barnabas Hughes. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XXXVI, 412 p. 416 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Sources and Studies in the History of Mathematics and Physical Sciences,  |x 2196-8829 
505 0 |a Measuring Areas of Rectangular Fields -- Finding Roots of Numbers -- Measuring All Kinds of Fields -- Dividing Fields Among Partners -- Finding Cube Roots -- Finding Dimensions of Bodies -- Measuring Heights, Depths, and Longitude of Planets -- Geometric Subtleties. 
520 |a Leonardo da Pisa, perhaps better known as Fibonacci (ca. 1170 - ca. 1240), selected the most useful parts of Greco-Arabic geometry for the book known as De practica geometrie. Beginning with the definitions and constructions found early on in Euclid's Elements, Fibonacci instructed his reader how to compute with Pisan units of measure, find square and cube roots, determine dimensions of both rectilinear and curved surfaces and solids, work with tables for indirect measurement, and perhaps finally fire the imagination of builders with analyses of pentagons and decagons. His work exceeded what readers would expect for the topic. Practical Geometry is the name of the craft for medieval landmeasurers, otherwise known as surveyors in modern times. Fibonacci wrote De practica geometrie for these artisans, a fitting complement to Liber abbaci. He had been at work on the geometry project for some time when a friend encouraged him to complete the task, which he did, going beyond the merely practical, as he remarked, "Some parts are presented according to geometric demonstrations, other parts in dimensions after a lay fashion, with which they wish to engage according to the more common practice." This translation offers a reconstruction of De practica geometrie as the author judges Fibonacci wrote it. In order to appreciate what Fibonacci created, the author considers his command of Arabic, his schooling, and the resources available to him. To these are added the authors own views on translation and remarks about early Renaissance Italian translations. A bibliography of primary and secondary resources follows the translation, completed by an index of names and special words. 
650 0 |a Mathematics. 
650 0 |a History. 
650 0 |a Geometry. 
650 1 4 |a History of Mathematical Sciences. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387519784 
776 0 8 |i Printed edition:  |z 9781441925015 
776 0 8 |i Printed edition:  |z 9780387729305 
830 0 |a Sources and Studies in the History of Mathematics and Physical Sciences,  |x 2196-8829 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-72931-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)