Cargando…

Class Field Theory

Class field theory, the study of abelian extensions of algebraic number fields, is one of the largest branches of algebraic number theory. It brings together the quadratic and higher reciprocity laws of Gauss, Legendre, and others, and vastly generalizes them. Some of its consequences (e.g., the Che...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Childress, Nancy (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-72490-4
003 DE-He213
005 20220117130505.0
007 cr nn 008mamaa
008 110402s2009 xxu| s |||| 0|eng d
020 |a 9780387724904  |9 978-0-387-72490-4 
024 7 |a 10.1007/978-0-387-72490-4  |2 doi 
050 4 |a QA247-247.45 
050 4 |a QA161.P59 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.3  |2 23 
100 1 |a Childress, Nancy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Class Field Theory  |h [electronic resource] /  |c by Nancy Childress. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a X, 226 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a A Brief Review -- Dirichlet#x2019;s Theorem on Primes in Arithmetic Progressions -- Ray Class Groups -- The Id#x00E8;lic Theory -- Artin Reciprocity -- The Existence Theorem, Consequences and Applications -- Local Class Field Theory. 
520 |a Class field theory, the study of abelian extensions of algebraic number fields, is one of the largest branches of algebraic number theory. It brings together the quadratic and higher reciprocity laws of Gauss, Legendre, and others, and vastly generalizes them. Some of its consequences (e.g., the Chebotarev density theorem) apply even to nonabelian extensions.   This book is an accessible introduction to class field theory. It takes a traditional approach in that it presents the global material first, using some of the original techniques of proof, but in a fashion that is cleaner and more streamlined than most other books on this topic.   It could be used for a graduate course on algebraic number theory, as well as for students who are interested in self-study. The book has been class-tested, and the author has included exercises throughout the text.   Professor Nancy Childress is a member of the Mathematics Faculty at Arizona State University. 
650 0 |a Algebraic fields. 
650 0 |a Polynomials. 
650 0 |a Number theory. 
650 1 4 |a Field Theory and Polynomials. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387565989 
776 0 8 |i Printed edition:  |z 9780387724898 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-72490-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)