Cargando…

The Riemann Hypothesis A Resource for the Afficionado and Virtuoso Alike /

The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state caref...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Borwein, Peter (Editor ), Choi, Stephen (Editor ), Rooney, Brendan (Editor ), Weirathmueller, Andrea (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-72126-2
003 DE-He213
005 20220117233527.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387721262  |9 978-0-387-72126-2 
024 7 |a 10.1007/978-0-387-72126-2  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
245 1 4 |a The Riemann Hypothesis  |h [electronic resource] :  |b A Resource for the Afficionado and Virtuoso Alike /  |c edited by Peter Borwein, Stephen Choi, Brendan Rooney, Andrea Weirathmueller. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XIV, 533 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 2197-4152 
505 0 |a to the Riemann Hypothesis -- Why This Book -- Analytic Preliminaries -- Algorithms for Calculating ?(s) -- Empirical Evidence -- Equivalent Statements -- Extensions of the Riemann Hypothesis -- Assuming the Riemann Hypothesis and Its Extensions ... -- Failed Attempts at Proof -- Formulas -- Timeline -- Original Papers -- Expert Witnesses -- The Experts Speak for Themselves. 
520 |a The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture. 
650 0 |a Number theory. 
650 0 |a Mathematics. 
650 0 |a History. 
650 1 4 |a Number Theory. 
650 2 4 |a History of Mathematical Sciences. 
700 1 |a Borwein, Peter.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Choi, Stephen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rooney, Brendan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Weirathmueller, Andrea.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387519142 
776 0 8 |i Printed edition:  |z 9781441924650 
776 0 8 |i Printed edition:  |z 9780387721255 
830 0 |a CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,  |x 2197-4152 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-72126-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)