Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis
In a relatively short period of time, Data Envelopment Analysis (DEA) has grown into a powerful quantitative, analytical tool for measuring and evaluating performance. It has been successfully applied to a whole variety of problems in many different contexts worldwide. The analysis of an array of th...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer US : Imprint: Springer,
2007.
|
Edición: | 1st ed. 2007. |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Data Irregularities And Structural Complexities In Dea
- Rank Order Data In Dea
- Interval And Ordinal Data
- Variables With Negative Values In Dea
- Non-Discretionary Inputs
- DEA with Undesirable Factors
- European Nitrate Pollution Regulation and French Pig Farms' Performance
- PCA-DEA
- Mining Nonparametric Frontiers
- DEA Presented Graphically Using Multi-Dimensional Scaling
- DEA Models For Supply Chain or Multi-Stage Structure
- Network DEA
- Context-Dependent Data Envelopment Analysis and its Use
- Flexible Measures-Classifying Inputs and Outputs
- Integer Dea Models
- Data Envelopment Analysis With Missing Data
- Preparing Your Data for DEA.