Cargando…

Process Optimization A Statistical Approach /

PROCESS OPTIMIZATION: A Statistical Approach is a textbook for a course in experimental optimization techniques for industrial production processes and other "noisy" systems where the main emphasis is process optimization. The book can also be used as a reference text by Industrial, Qualit...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: del Castillo, Enrique (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:International Series in Operations Research & Management Science, 105
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-71435-6
003 DE-He213
005 20220120094103.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387714356  |9 978-0-387-71435-6 
024 7 |a 10.1007/978-0-387-71435-6  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a del Castillo, Enrique.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Process Optimization  |h [electronic resource] :  |b A Statistical Approach /  |c by Enrique del Castillo. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2007. 
300 |a XVIII, 462 p. 76 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 2214-7934 ;  |v 105 
505 0 |a Preliminaries -- An Overview of Empirical Process Optimization -- Elements of Response Surface Methods -- Optimization Of First Order Models -- Experimental Designs For First Order Models -- Analysis and Optimization of Second Order Models -- Experimental Designs for Second Order Models -- Statistical Inference in Process Optimization -- Statistical Inference in First Order RSM Optimization -- Statistical Inference in Second Order RSM Optimization -- Bias Vs. Variance -- Robust Parameter Design and Robust Optimization -- Robust Parameter Design -- Robust Optimization -- Bayesian Approaches in Process Optimization -- to Bayesian Inference -- Bayesian Methods for Process Optimization -- to Optimization of Simulation and Computer Models -- Simulation Optimization -- Kriging and Computer Experiments -- Appendices -- Basics of Linear Regression -- Analysis of Variance -- Matrix Algebra and Optimization Results -- Some Probability Results Used in Bayesian Inference. 
520 |a PROCESS OPTIMIZATION: A Statistical Approach is a textbook for a course in experimental optimization techniques for industrial production processes and other "noisy" systems where the main emphasis is process optimization. The book can also be used as a reference text by Industrial, Quality and Process Engineers and Applied Statisticians working in industry, in particular, in semiconductor/electronics manufacturing and in biotech manufacturing industries. The major features of PROCESS OPTIMIZATION: A Statistical Approach are: It provides a complete exposition of mainstream experimental design techniques, including designs for first and second order models, response surface and optimal designs; Discusses mainstream response surface method in detail, including unconstrained and constrained (i.e., ridge analysis and dual and multiple response) approaches; Includes an extensive discussion of Robust Parameter Design (RPD) problems, including experimental design issues such as Split Plot designs and recent optimization approaches used for RPD; Presents a detailed treatment of Bayesian Optimization approaches based on experimental data (including an introduction to Bayesian inference), including single and multiple response optimization and model robust optimization; Provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization and more; Contains a discussion on robust optimization methods as used in mathematical programming and their application in response surface optimization; Offers software programs written in MATLAB and MAPLE to implement Bayesian and frequentist process optimization methods; Provides an introduction to the optimization of computer and simulation experiments including and introduction to stochastic approximation and stochastic perturbation stochastic approximation (SPSA) methods; Includes an introduction to Kriging methods and experimental design for computer experiments; Provides extensive appendices on Linear Regression, ANOVA, and Optimization Results. . 
650 0 |a Probabilities. 
650 0 |a Security systems. 
650 0 |a Engineering design. 
650 0 |a Statistics . 
650 0 |a Mathematical models. 
650 1 4 |a Probability Theory. 
650 2 4 |a Security Science and Technology. 
650 2 4 |a Engineering Design. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387518534 
776 0 8 |i Printed edition:  |z 9781441943965 
776 0 8 |i Printed edition:  |z 9780387714349 
830 0 |a International Series in Operations Research & Management Science,  |x 2214-7934 ;  |v 105 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-71435-6  |z Texto Completo 
912 |a ZDB-2-SBE 
912 |a ZDB-2-SXBM 
950 |a Business and Economics (SpringerNature-11643) 
950 |a Business and Management (R0) (SpringerNature-43719)