Cargando…

Correlated Data Analysis: Modeling, Analytics, and Applications

This book presents some recent developments in correlated data analysis. It utilizes the class of dispersion models as marginal components in the formulation of joint models for correlated data. This enables the book to handle a broader range of data types than those analyzed by traditional generali...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Song, Peter X. -K (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-71393-9
003 DE-He213
005 20220117170053.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387713939  |9 978-0-387-71393-9 
024 7 |a 10.1007/978-0-387-71393-9  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Song, Peter X. -K.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Correlated Data Analysis: Modeling, Analytics, and Applications  |h [electronic resource] /  |c by Peter X. -K. Song. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2007. 
300 |a XVI, 352 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X 
505 0 |a and Examples -- Dispersion Models -- Inference Functions -- Modeling Correlated Data -- Marginal Generalized Linear Models -- Vector Generalized Linear Models -- Mixed-Effects Models: Likelihood-Based Inference -- Mixed-Effects Models: Bayesian Inference -- Linear Predictors -- Generalized State Space Models -- Generalized State Space Models for Longitudinal Binomial Data -- Generalized State Space Models for Longitudinal Count Data -- Missing Data in Longitudinal Studies. 
520 |a This book presents some recent developments in correlated data analysis. It utilizes the class of dispersion models as marginal components in the formulation of joint models for correlated data. This enables the book to handle a broader range of data types than those analyzed by traditional generalized linear models. One example is correlated angular data. This book provides a systematic treatment for the topic of estimating functions. Under this framework, both generalized estimating equations (GEE) and quadratic inference functions (QIF) are studied as special cases. In addition to marginal models and mixed-effects models, this book covers topics on joint regression analysis based on Gaussian copulas and generalized state space models for longitudinal data from long time series. Various real-world data examples, numerical illustrations and software usage tips are presented throughout the book. This book has evolved from lecture notes on longitudinal data analysis, and may be considered suitable as a textbook for a graduate course on correlated data analysis. This book is inclined more towards technical details regarding the underlying theory and methodology used in software-based applications. Therefore, the book will serve as a useful reference for those who want theoretical explanations to puzzles arising from data analyses or deeper understanding of underlying theory related to analyses. Peter Song is Professor of Statistics in the Department of Statistics and Actuarial Science at the University of Waterloo. Professor Song has published various papers on the theory and modeling of correlated data analysis. He has held a visiting position at the University of Michigan School of Public Health (Ann Arbor, Michigan). 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 1 4 |a Probability Theory. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387565583 
776 0 8 |i Printed edition:  |z 9781441924407 
776 0 8 |i Printed edition:  |z 9780387713922 
830 0 |a Springer Series in Statistics,  |x 2197-568X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-71393-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)