Cargando…

Privacy-Preserving Data Mining Models and Algorithms /

Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals. This has caused concerns that personal data may be used for a variety of intrusive or malicious purposes. Privacy Preserving Data Mining: Models and Algorithms proposes a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Aggarwal, Charu C. (Editor ), Yu, Philip S. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Advances in Database Systems
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-70992-5
003 DE-He213
005 20220113153338.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387709925  |9 978-0-387-70992-5 
024 7 |a 10.1007/978-0-387-70992-5  |2 doi 
050 4 |a QA76.9.A25 
072 7 |a UR  |2 bicssc 
072 7 |a UTN  |2 bicssc 
072 7 |a COM053000  |2 bisacsh 
072 7 |a UR  |2 thema 
072 7 |a UTN  |2 thema 
082 0 4 |a 005.8  |2 23 
245 1 0 |a Privacy-Preserving Data Mining  |h [electronic resource] :  |b Models and Algorithms /  |c edited by Charu C. Aggarwal, Philip S. Yu. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2008. 
300 |a XXII, 514 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Database Systems 
505 0 |a An Introduction to Privacy-Preserving Data Mining -- A General Survey of Privacy-Preserving Data Mining Models and Algorithms -- A Survey of Inference Control Methods for Privacy-Preserving Data Mining -- Measures of Anonymity -- k-Anonymous Data Mining: A Survey -- A Survey of Randomization Methods for Privacy-Preserving Data Mining -- A Survey of Multiplicative Perturbation for Privacy-Preserving Data Mining -- A Survey of Quantification of Privacy Preserving Data Mining Algorithms -- A Survey of Utility-based Privacy-Preserving Data Transformation Methods -- Mining Association Rules under Privacy Constraints -- A Survey of Association Rule Hiding Methods for Privacy -- A Survey of Statistical Approaches to Preserving Confidentiality of Contingency Table Entries -- A Survey of Privacy-Preserving Methods Across Horizontally Partitioned Data -- A Survey of Privacy-Preserving Methods Across Vertically Partitioned Data -- A Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods -- Private Data Analysis via Output Perturbation -- A Survey of Query Auditing Techniques for Data Privacy -- Privacy and the Dimensionality Curse -- Personalized Privacy Preservation -- Privacy-Preserving Data Stream Classification. 
520 |a Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals. This has caused concerns that personal data may be used for a variety of intrusive or malicious purposes. Privacy Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and protocols for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques. This edited volume also contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions of a particular topic in privacy. Privacy Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science. This book is also suitable for practitioners in industry. . 
650 0 |a Data protection. 
650 0 |a Data mining. 
650 0 |a Cryptography. 
650 0 |a Data encryption (Computer science). 
650 0 |a Database management. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Application software. 
650 1 4 |a Data and Information Security. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Cryptology. 
650 2 4 |a Database Management. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Computer and Information Systems Applications. 
700 1 |a Aggarwal, Charu C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Yu, Philip S.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387565408 
776 0 8 |i Printed edition:  |z 9781441943712 
776 0 8 |i Printed edition:  |z 9780387709918 
830 0 |a Advances in Database Systems 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-70992-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)