Cargando…

Stochastic Simulation: Algorithms and Analysis

Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Asmussen, Søren (Autor), Glynn, Peter W. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Stochastic Modelling and Applied Probability, 57
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-69033-9
003 DE-He213
005 20220118105127.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387690339  |9 978-0-387-69033-9 
024 7 |a 10.1007/978-0-387-69033-9  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Asmussen, Søren.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stochastic Simulation: Algorithms and Analysis  |h [electronic resource] /  |c by Søren Asmussen, Peter W. Glynn. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2007. 
300 |a XIV, 476 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Stochastic Modelling and Applied Probability,  |x 2197-439X ;  |v 57 
505 0 |a General Methods and Algorithms -- Generating Random Objects -- Output Analysis -- Steady-State Simulation -- Variance-Reduction Methods -- Rare-Event Simulation -- Derivative Estimation -- Stochastic Optimization -- Algorithms for Special Models -- Numerical Integration -- Stochastic Di3erential Equations -- Gaussian Processes -- Lèvy Processes -- Markov Chain Monte Carlo Methods -- Selected Topics and Extended Examples -- What This Book Is About -- What This Book Is About. 
520 |a Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first half of the book focuses on general methods, whereas the second half discusses model-specific algorithms. Given the wide range of examples, exercises and applications students, practitioners and researchers in probability, statistics, operations research, economics, finance, engineering as well as biology and chemistry and physics will find the book of value. Søren Asmussen is a professor of Applied Probability at Aarhus University, Denmark and Peter Glynn is the Thomas Ford professor of Engineering at Stanford University. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Operations research. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 0 |a Management science. 
650 0 |a Social sciences-Mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Operations Research and Decision Theory. 
650 2 4 |a Industrial and Production Engineering. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Mathematics in Business, Economics and Finance. 
700 1 |a Glynn, Peter W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387511177 
776 0 8 |i Printed edition:  |z 9781441921468 
776 0 8 |i Printed edition:  |z 9780387306797 
830 0 |a Stochastic Modelling and Applied Probability,  |x 2197-439X ;  |v 57 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-69033-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)