Cargando…

Least-Squares Finite Element Methods

The book examines theoretical and computational aspects of least-squares finite element methods(LSFEMs) for partial differential equations (PDEs) arising in key science and engineering applications. It is intended for mathematicians, scientists, and engineers interested in either or both the theory...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bochev, Pavel B. (Autor), Gunzburger, Max D. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Applied Mathematical Sciences, 166
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-68922-7
003 DE-He213
005 20220117183610.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387689227  |9 978-0-387-68922-7 
024 7 |a 10.1007/b13382  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Bochev, Pavel B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Least-Squares Finite Element Methods  |h [electronic resource] /  |c by Pavel B. Bochev, Max D. Gunzburger. 
250 |a 1st ed. 2009. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2009. 
300 |a XXII, 660 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 2196-968X ;  |v 166 
505 0 |a Survey of Variational Principles and Associated Finite Element Methods. -- Classical Variational Methods -- Alternative Variational Formulations -- Abstract Theory of Least-Squares Finite Element Methods -- Mathematical Foundations of Least-Squares Finite Element Methods -- The Agmon#x2013;Douglis#x2013;Nirenberg Setting for Least-Squares Finite Element Methods -- Least-Squares Finite Element Methods for Elliptic Problems -- Scalar Elliptic Equations -- Vector Elliptic Equations -- The Stokes Equations -- Least-Squares Finite Element Methods for Other Settings -- The Navier#x2013;Stokes Equations -- Parabolic Partial Differential Equations -- Hyperbolic Partial Differential Equations -- Control and Optimization Problems -- Variations on Least-Squares Finite Element Methods -- Supplementary Material -- Analysis Tools -- Compatible Finite Element Spaces -- Linear Operator Equations in Hilbert Spaces -- The Agmon#x2013;Douglis#x2013;Nirenberg Theory and Verifying its Assumptions. 
520 |a The book examines theoretical and computational aspects of least-squares finite element methods(LSFEMs) for partial differential equations (PDEs) arising in key science and engineering applications. It is intended for mathematicians, scientists, and engineers interested in either or both the theory and practice associated with the numerical solution of PDEs. The first part looks at strengths and weaknesses of classical variational principles, reviews alternative variational formulations, and offers a glimpse at the main concepts that enter into the formulation of LSFEMs. Subsequent parts introduce mathematical frameworks for LSFEMs and their analysis, apply the frameworks to concrete PDEs, and discuss computational properties of resulting LSFEMs. Also included are recent advances such as compatible LSFEMs, negative-norm LSFEMs, and LSFEMs for optimal control and design problems. Numerical examples illustrate key aspects of the theory ranging from the importance of norm-equivalence to connections between compatible LSFEMs and classical-Galerkin and mixed-Galerkin methods. Pavel Bochev is a Distinguished Member of the Technical Staff at Sandia National Laboratories with research interests in compatible discretizations for PDEs, multiphysics problems, and scientific computing. Max Gunzburger is Frances Eppes Professor of Scientific Computing and Mathematics at Florida State University and recipient of the W.T. and Idelia Reid Prize in Mathematics from the Society for Industrial and Applied Mathematics. . 
650 0 |a Numerical analysis. 
650 0 |a Mathematical analysis. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Mathematics-Data processing. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Fluid mechanics. 
650 1 4 |a Numerical Analysis. 
650 2 4 |a Analysis. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Engineering Fluid Dynamics. 
700 1 |a Gunzburger, Max D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441921604 
776 0 8 |i Printed edition:  |z 9780387563220 
776 0 8 |i Printed edition:  |z 9780387308883 
830 0 |a Applied Mathematical Sciences,  |x 2196-968X ;  |v 166 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b13382  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)