Cargando…

Numerical Methods for Laplace Transform Inversion

Operational methods have been used for over a century to solve many problems-for example, ordinary and partial differential equations. In many problems it is fairly easy to obtain the Laplace transform, but it can be very demanding to determine the inverse Laplace transform that is the solution of t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cohen, Alan M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Numerical Methods and Algorithms ; 5
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-68855-8
003 DE-He213
005 20220119075544.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387688558  |9 978-0-387-68855-8 
024 7 |a 10.1007/978-0-387-68855-8  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKL  |2 thema 
082 0 4 |a 515.72  |2 23 
100 1 |a Cohen, Alan M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Numerical Methods for Laplace Transform Inversion  |h [electronic resource] /  |c by Alan M. Cohen. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2007. 
300 |a XIV, 252 p. 25 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Numerical Methods and Algorithms ;  |v 5 
505 0 |a Basic Results -- Inversion Formulae and Practical Results -- The Method of Series Expansion -- Quadrature Methods -- Rational Approximation Methods -- The Method of Talbot -- Methods based on the Post-Widder Inversion Formula -- The Method of Regularization -- Survey Results -- Applications. 
520 |a Operational methods have been used for over a century to solve many problems-for example, ordinary and partial differential equations. In many problems it is fairly easy to obtain the Laplace transform, but it can be very demanding to determine the inverse Laplace transform that is the solution of the given problem. Sometimes, after some difficult contour integration, we find that a series solution results, but even this may be quite difficult to evaluate in order to get an answer at a particular time value. The advent of computers has given an impetus to developing numerical methods for the determination of the inverse Laplace transform. This book gives background material on the theory of Laplace transforms together with a comprehensive list of methods that are available at the current time. Computer programs are included for those methods that perform consistently well on a wide range of Laplace transforms. Audience This book is intended for engineers, scientists, mathematicians, statisticians and financial planners. 
650 0 |a Mathematical analysis. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Integral Transforms and Operational Calculus. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441939319 
776 0 8 |i Printed edition:  |z 9780387508931 
776 0 8 |i Printed edition:  |z 9780387282619 
830 0 |a Numerical Methods and Algorithms ;  |v 5 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-68855-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)