Cargando…

Braid Groups

Braids and braid groups have been at the heart of mathematical development over the last two decades. Braids play an important role in diverse areas of mathematics and theoretical physics. The special beauty of the theory of braids stems from their attractive geometric nature and their close relatio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kassel, Christian (Autor), Turaev, Vladimir (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Graduate Texts in Mathematics, 247
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-68548-9
003 DE-He213
005 20220113005944.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387685489  |9 978-0-387-68548-9 
024 7 |a 10.1007/978-0-387-68548-9  |2 doi 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Kassel, Christian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Braid Groups  |h [electronic resource] /  |c by Christian Kassel, Vladimir Turaev. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a X, 338 p. 60 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 247 
505 0 |a Braids and Braid Groups -- Braids, Knots, and Links -- Homological Representations of the Braid Groups -- Symmetric Groups and Iwahori#x2013;Hecke Algebras -- Representations of the Iwahori#x2013;Hecke Algebras -- Garside Monoids and Braid Monoids -- An Order on the Braid Groups -- Presentations of SL(Z) and PSL(Z) -- Fibrations and Homotopy Sequences -- The Birman#x2013;Murakami#x2013;Wenzl Algebras -- Left Self-Distributive Sets. 
520 |a Braids and braid groups have been at the heart of mathematical development over the last two decades. Braids play an important role in diverse areas of mathematics and theoretical physics. The special beauty of the theory of braids stems from their attractive geometric nature and their close relations to other fundamental geometric objects, such as knots, links, mapping class groups of surfaces, and configuration spaces. In this presentation the authors thoroughly examine various aspects of the theory of braids, starting from basic definitions and then moving to more recent results. The advanced topics cover the Burau and the Lawrence--Krammer--Bigelow representations of the braid groups, the Alexander--Conway and Jones link polynomials, connections with the representation theory of the Iwahori--Hecke algebras, and the Garside structure and orderability of the braid groups. This book will serve graduate students, mathematicians, and theoretical physicists interested in low-dimensional topology and its connections with representation theory. 
650 0 |a Group theory. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Algebra. 
650 0 |a Algebraic topology. 
650 1 4 |a Group Theory and Generalizations. 
650 2 4 |a Manifolds and Cell Complexes. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
650 2 4 |a Algebraic Topology. 
700 1 |a Turaev, Vladimir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387563596 
776 0 8 |i Printed edition:  |z 9781441922205 
776 0 8 |i Printed edition:  |z 9780387338415 
830 0 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 247 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-68548-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)