Cargando…

Quadratic Diophantine Equations

This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open probl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Andreescu, Titu (Autor), Andrica, Dorin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Developments in Mathematics, 40
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-54109-9
003 DE-He213
005 20220116162347.0
007 cr nn 008mamaa
008 150629s2015 xxu| s |||| 0|eng d
020 |a 9780387541099  |9 978-0-387-54109-9 
024 7 |a 10.1007/978-0-387-54109-9  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Andreescu, Titu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quadratic Diophantine Equations  |h [electronic resource] /  |c by Titu Andreescu, Dorin Andrica. 
250 |a 1st ed. 2015. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XVIII, 211 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Developments in Mathematics,  |x 2197-795X ;  |v 40 
505 0 |a Why Quadratic Diophantine Equations? -- Continued Fractions, Diophantine Approximation and Quadratic Rings -- Pell's Equation -- General Pell's Equation -- Equations Reducible to Pell's Type Equations -- Diophantine Representations of Some Sequences -- Other Applications. 
520 |a This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis. 
650 0 |a Number theory. 
650 0 |a Algebra. 
650 1 4 |a Number Theory. 
650 2 4 |a Algebra. 
700 1 |a Andrica, Dorin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387563787 
776 0 8 |i Printed edition:  |z 9780387351568 
776 0 8 |i Printed edition:  |z 9781493938803 
830 0 |a Developments in Mathematics,  |x 2197-795X ;  |v 40 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-54109-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)