Cargando…

Random Fields and Geometry

This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Adler, R. J. (Autor), Taylor, Jonathan E. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-48116-6
003 DE-He213
005 20220115025225.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387481166  |9 978-0-387-48116-6 
024 7 |a 10.1007/978-0-387-48116-6  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Adler, R. J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Random Fields and Geometry  |h [electronic resource] /  |c by R. J. Adler, Jonathan E. Taylor. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2007. 
300 |a XVIII, 454 p. 21 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a Gaussian Processes -- Gaussian Fields -- Gaussian Inequalities -- Orthogonal Expansions -- Excursion Probabilities -- Stationary Fields -- Geometry -- Integral Geometry -- Differential Geometry -- Piecewise Smooth Manifolds -- Critical Point Theory -- Volume of Tubes -- The Geometry of Random Fields -- Random Fields on Euclidean Spaces -- Random Fields on Manifolds -- Mean Intrinsic Volumes -- Excursion Probabilities for Smooth Fields -- Non-Gaussian Geometry. 
520 |a This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. The three parts to the monograph are quite distinct. Part I presents a user-friendly yet comprehensive background to the general theory of Gaussian random fields, treating classical topics such as continuity and boundedness, entropy and majorizing measures, Borell and Slepian inequalities. Part II gives a quick review of geometry, both integral and Riemannian, to provide the reader with the material needed for Part III, and to give some new results and new proofs of known results along the way. Topics such as Crofton formulae, curvature measures for stratified manifolds, critical point theory, and tube formulae are covered. In fact, this is the only concise, self-contained treatment of all of the above topics, which are necessary for the study of random fields. The new approach in Part III is devoted to the geometry of excursion sets of random fields and the related Euler characteristic approach to extremal probabilities. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory. These applications, to appear in a forthcoming volume, will cover areas as widespread as brain imaging, physical oceanography, and astrophysics. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Geometry. 
650 0 |a Mathematical physics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Statistics. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Taylor, Jonathan E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387564470 
776 0 8 |i Printed edition:  |z 9781441923691 
776 0 8 |i Printed edition:  |z 9780387481128 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-48116-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)