Cargando…

Lagrangian Transport in Geophysical Jets and Waves The Dynamical Systems Approach /

This book provides an accessible introduction to a new set of methods for the analysis of Lagrangian motion in geophysical flows. These methods were originally developed in the abstract mathematical setting of dynamical systems theory, through a geometric approach to differential equations. Despite...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Samelson, Roger M. (Autor), Wiggins, Stephen (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Interdisciplinary Applied Mathematics, 31
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-46213-4
003 DE-He213
005 20220117130155.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387462134  |9 978-0-387-46213-4 
024 7 |a 10.1007/978-0-387-46213-4  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Samelson, Roger M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lagrangian Transport in Geophysical Jets and Waves  |h [electronic resource] :  |b The Dynamical Systems Approach /  |c by Roger M. Samelson, Stephen Wiggins. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2006. 
300 |a X, 150 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interdisciplinary Applied Mathematics,  |x 2196-9973 ;  |v 31 
505 0 |a Steadily Translating Waves and Meanders -- Integrability of Lagrangian Motion -- Fluctuating Waves and Meanders -- Material Manifolds, Flow Regimes, and Fluid Exchange -- Lobe Transport and Flux -- Transport and Dynamics. 
520 |a This book provides an accessible introduction to a new set of methods for the analysis of Lagrangian motion in geophysical flows. These methods were originally developed in the abstract mathematical setting of dynamical systems theory, through a geometric approach to differential equations. Despite the recent developments in this field and the existence of a substantial body of work on geophysical fluid problems in the dynamical systems and geophysical literature, this is the first introductory text that presents these methods in the context of geophysical fluid flow. The book is organized into seven chapters; the first introduces the geophysical context and the mathematical models of geophysical fluid flow that are explored in subsequent chapters. The second and third cover the simplest case of steady flow, develop basic mathematical concepts and definitions, and touch on some important topics from the classical theory of Hamiltonian systems. The fundamental elements and methods of Lagrangian transport analysis in time-dependent flows that are the main subject of the book are described in the fourth, fifth, and sixth chapters. The seventh chapter gives a brief survey of some of the rapidly evolving research in geophysical fluid dynamics that makes use of this new approach. Related supplementary material, including a glossary and an introduction to numerical methods, is given in the appendices. This book will prove useful to graduate students, research scientists, and educators in any branch of geophysical fluid science in which the motion and transport of fluid, and of materials carried by the fluid, is of interest. It will also prove interesting and useful to the applied mathematicians who seek an introduction to an intriguing and rapidly developing area of geophysical fluid dynamics. The book was jointly authored by a geophysical fluid dynamicist, Roger M. Samelson of the College of Oceanic and Atmospheric Sciences at Oregon State University, USA and an applied mathematician, Stephen Wiggins of the School of Mathematics, University of Bristol, UK. 
650 0 |a Dynamical systems. 
650 0 |a Earth sciences. 
650 0 |a Physics. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Earth Sciences. 
650 2 4 |a Classical and Continuum Physics. 
700 1 |a Wiggins, Stephen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441922045 
776 0 8 |i Printed edition:  |z 9780387513096 
776 0 8 |i Printed edition:  |z 9780387332697 
830 0 |a Interdisciplinary Applied Mathematics,  |x 2196-9973 ;  |v 31 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-46213-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)