Cargando…

Statistical Monitoring of Clinical Trials A Unified Approach /

The approach taken in this book is, to studies monitored over time, what the Central Limit Theorem is to studies with only one analysis. Just as the Central Limit Theorem shows that test statistics involving very different types of clinical trial outcomes are asymptotically normal, this book shows t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Proschan, Michael A. (Autor), Lan, K. K. Gordon (Autor), Wittes, Janet Turk (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Statistics for Biology and Health,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-44970-8
003 DE-He213
005 20220117135810.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387449708  |9 978-0-387-44970-8 
024 7 |a 10.1007/978-0-387-44970-8  |2 doi 
050 4 |a QH323.5 
072 7 |a PBT  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 570.15195  |2 23 
100 1 |a Proschan, Michael A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Statistical Monitoring of Clinical Trials  |h [electronic resource] :  |b A Unified Approach /  |c by Michael A. Proschan, K. K. Gordon Lan, Janet Turk Wittes. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2006. 
300 |a XIV, 268 p. 32 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 2197-5671 
505 0 |a A General Framework -- Power: Conditional, Unconditional, and Predictive -- Historical Monitoring Boundaries -- Spending Functions -- Practical Survival Monitoring -- Inference Following a Group-Sequential Trial -- Options When Brownian Motion Does Not Hold -- Monitoring for Safety -- Bayesian Monitoring -- Adaptive Sample Size Methods -- Topics Not Covered -- Appendix I: The Logrank and Related Tests -- Appendix II: Group-Sequential Software. 
520 |a The approach taken in this book is, to studies monitored over time, what the Central Limit Theorem is to studies with only one analysis. Just as the Central Limit Theorem shows that test statistics involving very different types of clinical trial outcomes are asymptotically normal, this book shows that the joint distribution of the test statistics at different analysis times is asymptotically multivariate normal with the correlation structure of Brownian motion (``the B-value") irrespective of the test statistic. The so-called B-value approach to monitoring allows us to use, for different types of trials, the same boundaries and the same simple formula for computing conditional power. Although Brownian motion may sound complicated, the authors make the approach easy by starting with a simple example and building on it, one piece at a time, ultimately showing that Brownian motion works for many different types of clinical trials. The book will be very valuable to statisticians involved in clinical trials. The main body of the chapters is accessible to anyone with knowledge of a standard mathematical statistics text. More mathematically advanced readers will find rigorous developments in appendices at the end of chapters. Reading the book will develop insight into not only monitoring, but power, survival analysis, safety, and other statistical issues germane to clinical trials. Michael Proschan, Gordon Lan, and Janet Wittes are elected Fellows of the American Statistical Association. All have spent formative years in the Biostatistics Research Branch of the National Heart, Lung, and Blood Institute (NHLBI/NIH). While there, they were intimately involved in the design and statistical monitoring of large-scale randomized clinical trials, developing methodology to aid in their monitoring. For example, Lan developed, with DeMets, the now widely-used spending function approach to group sequential designs, whose properties were further investigated by Proschan. The B-value approach used in the book was introduced in a very influential paper by Lan and Wittes. The statistical theory behind conditional power was developed by Lan, along with Simon and Halperin, and was the cornerstone for the conditional error approach to adaptive clinical trials introduced by Proschan and Hunsberger. All three authors have expertise in adaptive methodology for clinical trials. Michael Proschan is a Mathematical Statistician at the National Institutes of Health; Gordon Lan is Senior Director of Biometrics at Johnson & Johnson Pharmaceutical Research & Development, L.L.C.; Janet Wittes is President of Statistics Collaborative, a statistical consulting company she founded in 1990. 
650 0 |a Biometry. 
650 1 4 |a Biostatistics. 
700 1 |a Lan, K. K. Gordon.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wittes, Janet Turk.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441921345 
776 0 8 |i Printed edition:  |z 9780387510651 
776 0 8 |i Printed edition:  |z 9780387300597 
830 0 |a Statistics for Biology and Health,  |x 2197-5671 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-44970-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)