Nonlinear Dimensionality Reduction
Methods of dimensionality reduction provide a way to understand and visualize the structure of complex data sets. Traditional methods like principal component analysis and classical metric multidimensional scaling suffer from being based on linear models. Until recently, very few methods were able t...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Lee, John A. (Autor), Verleysen, Michel (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York : Imprint: Springer,
2007.
|
Edición: | 1st ed. 2007. |
Colección: | Information Science and Statistics,
|
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Machine Learning and Interpretation in Neuroimaging International Workshop, MLINI 2011, Held at NIPS 2011, Sierra Nevada, Spain, December 16-17, 2011, Revised Selected and Invited Contributions /
Publicado: (2012) -
Machine Learning and Interpretation in Neuroimaging 4th International Workshop, MLINI 2014, Held at NIPS 2014, Montreal, QC, Canada, December 13, 2014, Revised Selected Papers /
Publicado: (2016) -
Computational Diffusion MRI and Brain Connectivity MICCAI Workshops, Nagoya, Japan, September 22nd, 2013 /
Publicado: (2014) -
Topological Methods in Data Analysis and Visualization III Theory, Algorithms, and Applications /
Publicado: (2014) -
Modern Multivariate Statistical Techniques Regression, Classification, and Manifold Learning /
por: Izenman, Alan J.
Publicado: (2008)