Cargando…

Conics and Cubics A Concrete Introduction to Algebraic Curves /

Conics and Cubics is an accessible introduction to algebraic curves. Its focus on curves of degree at most three keeps results tangible and proofs transparent. Theorems follow naturally from high school algebra and two key ideas: homogenous coordinates and intersection multiplicities. By classifying...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bix, Robert (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2006.
Edición:2nd ed. 2006.
Colección:Undergraduate Texts in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-39273-8
003 DE-He213
005 20220118025434.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387392738  |9 978-0-387-39273-8 
024 7 |a 10.1007/0-387-39273-4  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Bix, Robert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Conics and Cubics  |h [electronic resource] :  |b A Concrete Introduction to Algebraic Curves /  |c by Robert Bix. 
250 |a 2nd ed. 2006. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2006. 
300 |a VIII, 347 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 2197-5604 
505 0 |a Intersections of Curves -- Conics -- Cubics -- Parametrizing Curves. 
520 |a Conics and Cubics is an accessible introduction to algebraic curves. Its focus on curves of degree at most three keeps results tangible and proofs transparent. Theorems follow naturally from high school algebra and two key ideas: homogenous coordinates and intersection multiplicities. By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezout's Theorem on the number of intersections of two curves. The book is a text for a one-semester course on algebraic curves for junior-senior mathematics majors. The only prerequisite is first-year calculus. The new edition introduces the deeper study of curves through parametrization by power series. Two uses of parametrizations are presented: counting multiple intersections of curves and proving the duality of curves and their envelopes. About the first edition: "The book...belongs in the admirable tradition of laying the foundations of a difficult and potentially abstract subject by means of concrete and accessible examples." - Peter Giblin, MathSciNet. 
650 0 |a Algebraic geometry. 
650 0 |a Geometry. 
650 0 |a Numerical analysis. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Geometry. 
650 2 4 |a Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387511986 
776 0 8 |i Printed edition:  |z 9781441921789 
776 0 8 |i Printed edition:  |z 9780387318028 
830 0 |a Undergraduate Texts in Mathematics,  |x 2197-5604 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-387-39273-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)