Cargando…

Ontology Learning and Population from Text Algorithms, Evaluation and Applications /

Standard formalisms for knowledge representation such as RDFS or OWL have been recently developed by the semantic web community and are now in place. However, the crucial question still remains: how will we acquire all the knowledge available in people's heads to feed our machines? Natural lang...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cimiano, Philipp (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-39252-3
003 DE-He213
005 20220117222147.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387392523  |9 978-0-387-39252-3 
024 7 |a 10.1007/978-0-387-39252-3  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Cimiano, Philipp.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Ontology Learning and Population from Text  |h [electronic resource] :  |b Algorithms, Evaluation and Applications /  |c by Philipp Cimiano. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2006. 
300 |a XXVIII, 347 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preliminaries -- Ontologies -- Ontology Learning from Text -- Basics -- Datasets -- Methods and Applications -- Concept Hierarchy Induction -- Learning Attributes and Relations -- Population -- Applications -- Conclusion -- Contribution and Outlook -- Concluding Remarks. 
520 |a Standard formalisms for knowledge representation such as RDFS or OWL have been recently developed by the semantic web community and are now in place. However, the crucial question still remains: how will we acquire all the knowledge available in people's heads to feed our machines? Natural language is THE means of communication for humans, and consequently texts are massively available on the Web. Terabytes and terabytes of texts containing opinions, ideas, facts and information of all sorts are waiting to be mined for interesting patterns and relationships, or used to annotate documents to facilitate their retrieval. A semantic web which ignores the massive amount of information encoded in text, might actually be a semantic, but not a very useful, web. Knowledge acquisition, and in particular ontology learning from text, actually has to be regarded as a crucial step within the vision of a semantic web. Ontology Learning and Population from Text: Algorithms, Evaluation and Applications presents approaches for ontology learning from text and will be relevant for researchers working on text mining, natural language processing, information retrieval, semantic web and ontologies. Containing introductory material and a quantity of related work on the one hand, but also detailed descriptions of algorithms, evaluation procedures etc. on the other, this book is suitable for novices, and experts in the field, as well as lecturers. Datasets, algorithms and course material can be downloaded at http://www.cimiano.de/olp. Ontology Learning and Population from Text: Algorithms, Evaluation and Applications is designed for practitioners in industry, as well researchers and graduate-level students in computer science. 
650 0 |a Computer science. 
650 0 |a Application software. 
650 0 |a Artificial intelligence. 
650 0 |a Database management. 
650 0 |a Multimedia systems. 
650 0 |a Computer networks . 
650 1 4 |a Theory of Computation. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Database Management. 
650 2 4 |a Multimedia Information Systems. 
650 2 4 |a Computer Communication Networks. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387511115 
776 0 8 |i Printed edition:  |z 9781441940322 
776 0 8 |i Printed edition:  |z 9780387306322 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-39252-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)