Cargando…

Semiparametric Theory and Missing Data

Missing data arise in almost all scientific disciplines. In many cases, the treatment of missing data in an analysis is carried out in a casual and ad-hoc manner, leading, in many cases, to invalid inference and erroneous conclusions. In the past 20 years or so, there has been a serious attempt to u...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tsiatis, Anastasios (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • to Semiparametric Models
  • Hilbert Space for Random Vectors
  • The Geometry of Influence Functions
  • Semiparametric Models
  • Other Examples of Semiparametric Models
  • Models and Methods for Missing Data
  • Missing and Coarsening at Random for Semiparametric Models
  • The Nuisance Tangent Space and Its Orthogonal Complement
  • Augmented Inverse Probability Weighted Complete-Case Estimators
  • Improving Efficiency and Double Robustness with Coarsened Data
  • Locally Efficient Estimators for Coarsened-Data Semiparametric Models
  • Approximate Methods for Gaining Efficiency
  • Double-Robust Estimator of the Average Causal Treatment Effect
  • Multiple Imputation: A Frequentist Perspective.