Cargando…

Semiparametric Theory and Missing Data

Missing data arise in almost all scientific disciplines. In many cases, the treatment of missing data in an analysis is carried out in a casual and ad-hoc manner, leading, in many cases, to invalid inference and erroneous conclusions. In the past 20 years or so, there has been a serious attempt to u...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tsiatis, Anastasios (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-37345-4
003 DE-He213
005 20220113081933.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387373454  |9 978-0-387-37345-4 
024 7 |a 10.1007/0-387-37345-4  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Tsiatis, Anastasios.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Semiparametric Theory and Missing Data  |h [electronic resource] /  |c by Anastasios Tsiatis. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2006. 
300 |a XVI, 388 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X 
505 0 |a to Semiparametric Models -- Hilbert Space for Random Vectors -- The Geometry of Influence Functions -- Semiparametric Models -- Other Examples of Semiparametric Models -- Models and Methods for Missing Data -- Missing and Coarsening at Random for Semiparametric Models -- The Nuisance Tangent Space and Its Orthogonal Complement -- Augmented Inverse Probability Weighted Complete-Case Estimators -- Improving Efficiency and Double Robustness with Coarsened Data -- Locally Efficient Estimators for Coarsened-Data Semiparametric Models -- Approximate Methods for Gaining Efficiency -- Double-Robust Estimator of the Average Causal Treatment Effect -- Multiple Imputation: A Frequentist Perspective. 
520 |a Missing data arise in almost all scientific disciplines. In many cases, the treatment of missing data in an analysis is carried out in a casual and ad-hoc manner, leading, in many cases, to invalid inference and erroneous conclusions. In the past 20 years or so, there has been a serious attempt to understand the underlying issues and difficulties that come about from missing data and their impact on subsequent analysis. There has been a great deal written on the theory developed for analyzing missing data for finite-dimensional parametric models. This includes an extensive literature on likelihood-based methods and multiple imputation. More recently, there has been increasing interest in semiparametric models which, roughly speaking, are models that include both a parametric and nonparametric component. Such models are popular because estimators in such models are more robust than in traditional parametric models. The theory of missing data applied to semiparametric models is scattered throughout the literature with no thorough comprehensive treatment of the subject. This book combines much of what is known in regard to the theory of estimation for semiparametric models with missing data in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is at a level that is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible. Anastasios A. Tsiatis is the Drexel Professor of Statistics at North Carolina State University. His research has focused on developing statistical methods for the design and analysis of clinical trials, censored survival analysis, group sequential methods, surrogate markers, semiparametric methods with missing and censored data and causal inference and has been the major Ph.D. advisor for more than 30 students working in these areas. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics. He is the recipient of the Spiegelman Award and the Snedecor Award. He has been an Associate Editor of the Annals of Statistics and Statistics and Probability Letters and is currently an Associate Editor for Biometrika. 
650 0 |a Statistics . 
650 1 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387512259 
776 0 8 |i Printed edition:  |z 9781441921857 
776 0 8 |i Printed edition:  |z 9780387324487 
830 0 |a Springer Series in Statistics,  |x 2197-568X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-387-37345-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)