Cargando…

Evolutionary Algorithms for Solving Multi-Objective Problems

This textbook is the second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly augmented with contemporary knowledge and adapted for the classroom. All the various features of multi-objective evolutionary algorithms (MOEAs) are presented in an innovative and stude...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Coello Coello, Carlos (Autor), Lamont, Gary B. (Autor), van Veldhuizen, David A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2007.
Edición:2nd ed. 2007.
Colección:Genetic and Evolutionary Computation,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-36797-2
003 DE-He213
005 20220116011313.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387367972  |9 978-0-387-36797-2 
024 7 |a 10.1007/978-0-387-36797-2  |2 doi 
050 4 |a QA76.6-76.66 
072 7 |a UM  |2 bicssc 
072 7 |a COM051000  |2 bisacsh 
072 7 |a UM  |2 thema 
082 0 4 |a 005.11  |2 23 
100 1 |a Coello Coello, Carlos.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Evolutionary Algorithms for Solving Multi-Objective Problems  |h [electronic resource] /  |c by Carlos Coello Coello, Gary B. Lamont, David A. van Veldhuizen. 
250 |a 2nd ed. 2007. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2007. 
300 |a XXI, 800 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Genetic and Evolutionary Computation,  |x 1932-0175 
505 0 |a Basic Concepts -- MOP Evolutionary Algorithm Approaches -- MOEA Local Search and Coevolution -- MOEA Test Suites -- MOEA Testing and Analysis -- MOEA Theory and Issues -- Applications -- MOEA Parallelization -- Multi-Criteria Decision Making -- Alternative Metaheuristics. 
520 |a This textbook is the second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly augmented with contemporary knowledge and adapted for the classroom. All the various features of multi-objective evolutionary algorithms (MOEAs) are presented in an innovative and student-friendly fashion, incorporating state-of-the-art research results. The diversity of serial and parallel MOEA structures are given, evaluated and compared. The book provides detailed insight into the application of MOEA techniques to an array of practical problems. The assortment of test suites are discussed along with the variety of appropriate metrics and relevant statistical performance techniques. Distinctive features of the new edition include: Designed for graduate courses on Evolutionary Multi-Objective Optimization, with exercises and links to a complete set of teaching material including tutorials Updated and expanded MOEA exercises, discussion questions and research ideas at the end of each chapter New chapter devoted to coevolutionary and memetic MOEAs with added material on solving constrained multi-objective problems Additional material on the most recent MOEA test functions and performance measures, as well as on the latest developments on the theoretical foundations of MOEAs An exhaustive index and bibliography This self-contained reference is invaluable to students, researchers and in particular to computer scientists, operational research scientists and engineers working in evolutionary computation, genetic algorithms and artificial intelligence. "...If you still do not know this book, then, I urge you to run-don't walk-to your nearest on-line or off-line book purveyor and click, signal or otherwise buy this important addition to our literature." -David E. Goldberg, University of Illinois at Urbana-Champaign. 
650 0 |a Computer programming. 
650 0 |a Computer science. 
650 0 |a Mathematical optimization. 
650 0 |a Probabilities. 
650 0 |a Algorithms. 
650 0 |a Artificial intelligence. 
650 1 4 |a Programming Techniques. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Optimization. 
650 2 4 |a Probability Theory. 
650 2 4 |a Algorithms. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Lamont, Gary B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a van Veldhuizen, David A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387513089 
776 0 8 |i Printed edition:  |z 9780387332543 
776 0 8 |i Printed edition:  |z 9781489994608 
830 0 |a Genetic and Evolutionary Computation,  |x 1932-0175 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-36797-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)