Cargando…

Multiplicative Ideal Theory in Commutative Algebra A Tribute to the Work of Robert Gilmer /

For over forty years, Robert Gilmer's numerous articles and books have had a tremendous impact on research in commutative algebra. It is not an exaggeration to say that most articles published today in non-Noetherian ring theory, and some in Noetherian ring theory as well, originated in a topic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Brewer, James W. (Editor ), Glaz, Sarah (Editor ), Heinzer, William (Editor ), Olberding, Bruce (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-36717-0
003 DE-He213
005 20220119205100.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387367170  |9 978-0-387-36717-0 
024 7 |a 10.1007/978-0-387-36717-0  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
245 1 0 |a Multiplicative Ideal Theory in Commutative Algebra  |h [electronic resource] :  |b A Tribute to the Work of Robert Gilmer /  |c edited by James W. Brewer, Sarah Glaz, William Heinzer, Bruce Olberding. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2006. 
300 |a XV, 435 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Commutative rngs -- Robert Gilmer's work on semigroup rings -- Numerical semigroup algebras -- Prüfer rings -- Subrings of zero-dimensional rings -- Old problems and new questions around integer-valued polynomials and factorial sequences -- Robert Gilmer's contributions to the theory of integer-valued polynomials -- Progress on the dimension question for power series rings -- Some research on chains of prime ideals influenced by the writings of Robert Gilmer -- Direct-sum decompositions over one-dimensional Cohen-Macaulay local rings -- An historical overview of Kronecker function rings, Nagata rings, and related star and semistar operations -- Generalized Dedekind domains -- Non-unique factorizations: a survey -- Mixed polynomial/power series rings and relatinos among their spectra -- Uppers to zero in polynomial rings -- On the dimension theory of polynomial rings over pullbacks -- Almost Dedekind domains which are not Dedekind -- Integrality properties of polynomial rings and semigroup rings -- Punctually free ideals -- Holomorphy rings of function fields -- The minimal number of generators of an invertible ideal -- About minimal morphisms -- What v-coprimality can do for you -- Some questions for further research -- Robert Gilmer's published works -- Commutative Algebra at Florida State 1963-1968. 
520 |a For over forty years, Robert Gilmer's numerous articles and books have had a tremendous impact on research in commutative algebra. It is not an exaggeration to say that most articles published today in non-Noetherian ring theory, and some in Noetherian ring theory as well, originated in a topic that Gilmer either initiated or enriched by his work. This volume, a tribute to his work, consists of twenty-four articles authored by Robert Gilmer's most prominent students and followers. These articles combine surveys of past work by Gilmer and others, recent results which have never before seen print, open problems, and extensive bibliographies. In a concluding article, Robert Gilmer points out directions for future research, highlighting the open problems in the areas he considers of importance. Robert Gilmer's article is followed by the complete list of his published works, his mathematical genealogical tree, information on the writing of his four books, and reminiscences about Robert Gilmer's contributions to the stimulating research environment in commutative algebra at Florida State in the middle 1960s. The entire collection provides an in-depth overview of the topics of research in a significant and large area of commutative algebra. Audience This book is intended for researchers and graduate students in the field of commutative algebra. 
650 0 |a Algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Group theory. 
650 1 4 |a Algebra. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Group Theory and Generalizations. 
700 1 |a Brewer, James W.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Glaz, Sarah.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Heinzer, William.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Olberding, Bruce.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387505343 
776 0 8 |i Printed edition:  |z 9781441937551 
776 0 8 |i Printed edition:  |z 9780387246000 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-36717-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)