Cargando…

Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings /

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Key Features The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lapidus, Michel L. (Autor), van Frankenhuijsen, Machiel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-35208-4
003 DE-He213
005 20220115070215.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387352084  |9 978-0-387-35208-4 
024 7 |a 10.1007/978-0-387-35208-4  |2 doi 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBP  |2 thema 
082 0 4 |a 514  |2 23 
100 1 |a Lapidus, Michel L.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fractal Geometry, Complex Dimensions and Zeta Functions  |h [electronic resource] :  |b Geometry and Spectra of Fractal Strings /  |c by Michel L. Lapidus, Machiel van Frankenhuijsen. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2006. 
300 |a XXIV, 460 p. 54 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a Complex Dimensions of Ordinary Fractal Strings -- Complex Dimensions of Self-Similar Fractal Strings -- Complex Dimensions of Nonlattice Self-Similar Strings: Quasiperiodic Patterns and Diophantine Approximation -- Generalized Fractal Strings Viewed as Measures -- Explicit Formulas for Generalized Fractal Strings -- The Geometry and the Spectrum of Fractal Strings -- Periodic Orbits of Self-Similar Flows -- Tubular Neighborhoods and Minkowski Measurability -- The Riemann Hypothesis and Inverse Spectral Problems -- Generalized Cantor Strings and their Oscillations -- The Critical Zeros of Zeta Functions -- Concluding Comments, Open Problems, and Perspectives. 
520 |a Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Key Features The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula The method of Diophantine approximation is used to study self-similar strings and flows Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions Throughout new results are examined. The final chapter gives a new definition of fractality as the presence of nonreal complex dimensions with positive real parts, and discusses several open problems and extensions. The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics. From Reviews of Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions, by Michel Lapidus and Machiel van Frankenhuysen, Birkhäuser Boston Inc., 2000. "This highly original self-contained book will appeal to geometers, fractalists, mathematical physicists and number theorists, as well as to graduate students in these fields and others interested in gaining insight into these rich areas either for its own sake or with a view to applications. They will find it a stimulating guide, well written in a clear and pleasant style." -Mathematical Reviews "It is the reviewer's opinion that the authors have succeeded in showing that the complex dimensions provide a very natural and unifying mathematical framework for investigating the oscillations in the geometry and the spectrum of a fractal string. The book is well written. The exposition is self-contained, intelligent and well paced." -Bulletin of the London Mathematical Society. 
650 0 |a Topology. 
650 0 |a Number theory. 
650 0 |a Measure theory. 
650 0 |a Differential equations. 
650 0 |a Dynamical systems. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Topology. 
650 2 4 |a Number Theory. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Differential Equations. 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 |a van Frankenhuijsen, Machiel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387513102 
776 0 8 |i Printed edition:  |z 9780387332857 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-35208-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)