Cargando…

Applied Computational Materials Modeling Theory, Simulation and Experiment /

Applied Computational Modeling identifies and emphasizes the successful link between computational materials modeling as a simulation and design tool and its synergistic application to experimental research and alloy development. Compared to other areas in science where computational modeling has m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Bozzolo, Guillermo (Editor ), Noebe, Ronald D. (Editor ), Abel, Phillip B. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-34565-9
003 DE-He213
005 20220118122954.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387345659  |9 978-0-387-34565-9 
024 7 |a 10.1007/978-0-387-34565-9  |2 doi 
050 4 |a TA401-492 
072 7 |a TGM  |2 bicssc 
072 7 |a TEC021000  |2 bisacsh 
072 7 |a TGM  |2 thema 
082 0 4 |a 620.11  |2 23 
245 1 0 |a Applied Computational Materials Modeling  |h [electronic resource] :  |b Theory, Simulation and Experiment /  |c edited by Guillermo Bozzolo, Ronald D. Noebe, Phillip B. Abel. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2007. 
300 |a XVI, 491 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Ab initio modeling of alloy phase equilibria -- Use of computational thermodynamics to identify potential alloy compositions for metallic glass formation -- How does a crystal grow? Experiments, models and simulations from the nano- to the micro-scale regime -- Structural and electronic properties from first-principles -- Synergy between material, surface science experiments and simulations -- Integration of first-principles calculations, calphad modeling, and phase-field simulations -- Quantum approximate methods for the atomistic modeling of multicomponent alloys -- Molecular orbital approach to alloy design -- Application of computational and experimental techniques in intelligent design of age-hardenable aluminum alloys -- Multiscale modeling of intergranular fracture in metals -- Multiscale modeling of deformation and fracture in metallic materials -- Frontiers in surface analysis: Experiments and modeling -- The evolution of composition and structure at metal-metal interfaces: Measurements and simulations -- Modeling of low enrichment uranium fuels for research and test reactors. 
520 |a  Applied Computational Modeling identifies and emphasizes the successful link between computational materials modeling as a simulation and design tool and its synergistic application to experimental research and alloy development. Compared to other areas in science where computational modeling has made substantial contributions to the development and growth of a particular field, computational materials modeling has been rather limited in its ability to insert itself as a major tool in materials design. The impression that computational modeling is simply an intellectual pursuit with limited real life application has delayed its widespread use by the mainstream materials community, but as in any emerging field, the time has come where it is now difficult to imagine any vigorous materials development program without a strong foundation in modeling. Hence, this book provides the average person working in the materials field with a more balanced perspective of the role that computational modeling can play in every day research and development efforts. This is done by presenting a series of examples of the successful application of various computational modeling procedures (everything from first principles to quantum approximate to CALPHAD methods) to real life surface and bulk alloy problems. This book should have a large appeal in the materials community, both for experimentalists who would greatly benefit from adding computational methods to their everyday research regimes, as well as for those scientists/engineers familiar with a particular computational method who would like to add complementary techniques to their arsenal of research and development tools. 
650 0 |a Materials science. 
650 0 |a Computational intelligence. 
650 0 |a Condensed matter. 
650 0 |a Mathematical physics. 
650 0 |a Engineering design. 
650 1 4 |a Materials Science. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Condensed Matter Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Engineering Design. 
700 1 |a Bozzolo, Guillermo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Noebe, Ronald D.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Abel, Phillip B.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387502465 
776 0 8 |i Printed edition:  |z 9781441935755 
776 0 8 |i Printed edition:  |z 9780387231174 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-34565-9  |z Texto Completo 
912 |a ZDB-2-CMS 
912 |a ZDB-2-SXC 
950 |a Chemistry and Materials Science (SpringerNature-11644) 
950 |a Chemistry and Material Science (R0) (SpringerNature-43709)