Cargando…

Text Mining Predictive Methods for Analyzing Unstructured Information /

One consequence of the pervasive use of computers is that most documents originate in digital form. Text mining-the process of searching, retrieving, and analyzing unstructured, natural-language text-is concerned with how to exploit the textual data embedded in these documents. Text Mining presents...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Weiss, Sholom M. (Autor), Indurkhya, Nitin (Autor), Zhang, Tong (Autor), Damerau, Fred (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-34555-0
003 DE-He213
005 20220117045518.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387345550  |9 978-0-387-34555-0 
024 7 |a 10.1007/978-0-387-34555-0  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Weiss, Sholom M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Text Mining  |h [electronic resource] :  |b Predictive Methods for Analyzing Unstructured Information /  |c by Sholom M. Weiss, Nitin Indurkhya, Tong Zhang, Fred Damerau. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2005. 
300 |a XII, 237 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Overview of Text Mining -- From Textual Information to Numerical Vectors -- Using Text for Prediction -- Information Retrieval and Text Mining -- Finding Structure in a Document Collection -- Looking for Information in Documents -- Case Studies -- Emerging Directions. 
520 |a One consequence of the pervasive use of computers is that most documents originate in digital form. Text mining-the process of searching, retrieving, and analyzing unstructured, natural-language text-is concerned with how to exploit the textual data embedded in these documents. Text Mining presents a comprehensive introduction and overview of the field, integrating related topics (such as artificial intelligence and knowledge discovery and data mining) and providing practical advice on how readers can use text-mining methods to analyze their own data. Emphasizing predictive methods, the book unifies all key areas in text mining: preprocessing, text categorization, information search and retrieval, clustering of documents, and information extraction. In addition, it identifies emerging directions for those looking to do research in the area. Some background in data mining is beneficial, but not essential. Topics and features: * Presents a comprehensive and easy-to-read introduction to text mining * Explores the application and utility of the methods, as well as the optimal techniques for specific scenarios * Provides several descriptive case studies that take readers from problem description to system deployment in the real world * Uses methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English) * Includes access to downloadable software (runs on any computer), as well as useful chapter-ending historical and bibliographical remarks, a detailed bibliography, and subject and author indexes This authoritative and highly accessible text, written by a team of authorities on text mining, develops the foundation concepts, principles, and methods needed to expand beyond structured, numeric data to automated mining of text samples. Researchers, computer scientists, and advanced undergraduates and graduates with work and interests in data mining, machine learning, databases, and computational linguistics will find the work an essential resource. 
650 0 |a Data mining. 
650 0 |a Computer networks . 
650 0 |a Information storage and retrieval systems. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Information technology-Management. 
650 0 |a Database management. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Natural Language Processing (NLP). 
650 2 4 |a Computer Application in Administrative Data Processing. 
650 2 4 |a Database Management. 
700 1 |a Indurkhya, Nitin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhang, Tong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Damerau, Fred.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441929969 
776 0 8 |i Printed edition:  |z 9780387571836 
776 0 8 |i Printed edition:  |z 9780387954332 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-34555-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)