Cargando…

The Fast Solution of Boundary Integral Equations

The use of surface potentials to describe solutions of partial differential equations goes back to the middle of the 19th century. Numerical approximation procedures, known today as Boundary Element Methods (BEM), have been developed in the physics and engineering community since the 1950s. These me...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Rjasanow, Sergej (Autor), Steinbach, Olaf (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Mathematical and Analytical Techniques with Applications to Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-34042-5
003 DE-He213
005 20220118170626.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387340425  |9 978-0-387-34042-5 
024 7 |a 10.1007/0-387-34042-4  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Rjasanow, Sergej.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Fast Solution of Boundary Integral Equations  |h [electronic resource] /  |c by Sergej Rjasanow, Olaf Steinbach. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2007. 
300 |a XII, 284 p. 97 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical and Analytical Techniques with Applications to Engineering,  |x 1559-7466 
505 0 |a Boundary Integral Equations -- Boundary Element Methods -- Approximation of Boundary Element Matrices -- Implementation and Numerical Examples. 
520 |a The use of surface potentials to describe solutions of partial differential equations goes back to the middle of the 19th century. Numerical approximation procedures, known today as Boundary Element Methods (BEM), have been developed in the physics and engineering community since the 1950s. These methods turn out to be powerful tools for numerical studies of various physical phenomena which can be described mathematically by partial differential equations. The Fast Solution of Boundary Integral Equations provides a detailed description of fast boundary element methods which are based on rigorous mathematical analysis. In particular, a symmetric formulation of boundary integral equations is used, Galerkin discretisation is discussed, and the necessary related stability and error estimates are derived. For the practical use of boundary integral methods, efficient algorithms together with their implementation are needed. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given which underline both theoretical results and the practical relevance of boundary element methods in typical computations. The most prominent example is the potential equation (Laplace equation), which is used to model physical phenomena in electromagnetism, gravitation theory, and in perfect fluids. A further application leading to the Laplace equation is the model of steady state heat flow. One of the most popular applications of the BEM is the system of linear elastostatics, which can be considered in both bounded and unbounded domains. A simple model for a fluid flow, the Stokes system, can also be solved by the use of the BEM. The most important examples for the Helmholtz equation are the acoustic scattering and the sound radiation. 
650 0 |a Mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Mathematical physics. 
650 0 |a Computer vision. 
650 0 |a Differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Computer Vision. 
650 2 4 |a Differential Equations. 
700 1 |a Steinbach, Olaf.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441941602 
776 0 8 |i Printed edition:  |z 9780387513836 
776 0 8 |i Printed edition:  |z 9780387340418 
830 0 |a Mathematical and Analytical Techniques with Applications to Engineering,  |x 1559-7466 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-387-34042-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)