Cargando…

Non-Euclidean Geometries János Bolyai Memorial Volume /

"From nothing I have created a new different world," wrote János Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the cour...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Prékopa, András (Editor ), Molnár, Emil (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Mathematics and Its Applications ; 581
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-29555-8
003 DE-He213
005 20220112192735.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387295558  |9 978-0-387-29555-8 
024 7 |a 10.1007/0-387-29555-0  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
245 1 0 |a Non-Euclidean Geometries  |h [electronic resource] :  |b János Bolyai Memorial Volume /  |c edited by András Prékopa, Emil Molnár. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2006. 
300 |a XIII, 506 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics and Its Applications ;  |v 581 
505 0 |a History -- The Revolution of János Bolyai -- Gauss and Non-Euclidean Geometry -- János Bolyai's New Face -- Axiomatical and Logical Aspects -- Hyperbolic Geometry, Dimension-Free -- An Absolute Property of Four Mutually Tangent Circles -- Remembering Donald Coxeter -- Axiomatizations of Hyperbolic and Absolute Geometries -- Logical Axiomatizations of Space-Time. Samples from the Literature -- Polyhedra, Volumes, Discrete Arrangements, Fractals -- Structures in Hyperbolic Space -- The Symmetry of Optimally Dense Packings -- Flexible Octahedra in the Hyperbolic Space -- Fractal Geometry on Hyperbolic Manifolds -- A Volume Formula for Generalised Hyperbolic Tetrahedra -- Tilings, Orbifolds and Manifolds, Visualization -- The Geometry of Hyperbolic Manifolds of Dimension at Least 4 -- Real-Time Animation in Hyperbolic, Spherical, and Product Geometries -- On Spontaneous Surgery on Knots and Links -- Classification of Tile-Transitive 3-Simplex Tilings and Their Realizations in Homogeneous Spaces -- Differential Geometry -- Non-Euclidean Analysis -- Holonomy, Geometry and Topology of Manifolds with Grassmann Structure -- Hypersurfaces of Type Number 2 in the Hyperbolic Four-Space and Their Extensions To Riemannian Geometry -- How Far Does Hyperbolic Geometry Generalize? -- Geometry of the Point Finsler Spaces -- Physics -- Black Hole Perturbations -- Placing the Hyperbolic Geometry of Bolyai and Lobachevsky Centrally in Special Relativity Theory: An Idea Whose Time has Returned. 
520 |a "From nothing I have created a new different world," wrote János Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the course of mathematics, opened the way for modern physical theories of the twentieth century, and had an impact on the history of human culture. The papers in this volume, which commemorates the 200th anniversary of the birth of János Bolyai, were written by leading scientists of non-Euclidean geometry, its history, and its applications. Some of the papers present new discoveries about the life and works of János Bolyai and the history of non-Euclidean geometry, others deal with geometrical axiomatics; polyhedra; fractals; hyperbolic, Riemannian and discrete geometry; tilings; visualization; and applications in physics. Audience This book is intended for those who teach, study, and do research in geometry and history of mathematics. Cultural historians, physicists, and computer scientists will also find it an important source of information. 
650 0 |a Geometry. 
650 0 |a Mathematics. 
650 0 |a History. 
650 0 |a Geometry, Differential. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Gravitation. 
650 1 4 |a Geometry. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Manifolds and Cell Complexes. 
650 2 4 |a Classical and Quantum Gravity. 
700 1 |a Prékopa, András.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Molnár, Emil.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387510279 
776 0 8 |i Printed edition:  |z 9780387295541 
776 0 8 |i Printed edition:  |z 9781461497714 
830 0 |a Mathematics and Its Applications ;  |v 581 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-387-29555-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)