Cargando…

Multiscale Optimization Methods and Applications

As optimization researchers tackle larger and larger problems, scale interactions play an increasingly important role. One general strategy for dealing with a large or difficult problem is to partition it into smaller ones, which are hopefully much easier to solve, and then work backwards towards th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Hager, William W. (Editor ), Huang, Shu-Jen (Editor ), Pardalos, Panos M. (Editor ), Prokopyev, Oleg A. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Nonconvex Optimization and Its Applications ; 82
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-29550-3
003 DE-He213
005 20220113082330.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387295503  |9 978-0-387-29550-3 
024 7 |a 10.1007/0-387-29550-X  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
245 1 0 |a Multiscale Optimization Methods and Applications  |h [electronic resource] /  |c edited by William W. Hager, Shu-Jen Huang, Panos M. Pardalos, Oleg A. Prokopyev. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2006. 
300 |a XVII, 407 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Nonconvex Optimization and Its Applications ;  |v 82 
505 0 |a Multiscale Optimization in VLSI Physical Design Automation -- A Distributed Method for Solving Semidefinite Programs Arising from Ad Hoc Wireless Sensor Network Localization -- Optimization Algorithms for Sparse Representations and Applications -- A Unified Framework for Modeling and Solving Combinatorial Optimization Problems: A Tutorial -- Global Convergence of a Non-monotone Trust-Region Filter Algorithm for Nonlinear Programming -- Factors Affecting the Performance of Optimization-based Multigrid Methods -- A Local Relaxation Method for Nonlinear Facility Location Problems -- Fluence Map Optimization in IMRT Cancer Treatment Planning and A Geometric Approach -- Panoramic Image Processing using Non-Commutative Harmonic Analysis Part I: Investigation -- Generating Geometric Models through Self-Organizing Maps -- Self-similar Solution of Unsteady Mixed Convection Flow on a Rotating Cone in a Rotating Fluid -- Homogenization of a Nonlinear Elliptic Boundary Value Problem Modelling Galvanic Interactions on a Heterogeneous Surface -- A Simple Mathematical Approach for Determining Intersection of Quadratic Surfaces -- Applications of Shape-Distance Metric to Clustering Shape-Databases -- Accurately Computing the Shape of Sandpiles -- Shape Optimization of Transfer Functions -- Achieving Wide Field of View Using Double-Mirror Catadioptric Sensors -- Darcy Flow, Multigrid, and Upscaling -- Iterated Adaptive Regularization for the Operator Equations of the First Kind -- Recover Multi-tensor Structure from HARD MRI Under Bi-Gaussian Assumption -- PACBB: A Projected Adaptive Cyclic Barzilai-Borwein Method for Box Constrained Optimization -- Nonrigid Correspondence and Classification of Curves Based on More Desirable Properties. 
520 |a As optimization researchers tackle larger and larger problems, scale interactions play an increasingly important role. One general strategy for dealing with a large or difficult problem is to partition it into smaller ones, which are hopefully much easier to solve, and then work backwards towards the solution of original problem, using a solution from a previous level as a starting guess at the next level. This volume contains 22 chapters highlighting some recent research. The topics of the chapters selected for this volume are focused on the development of new solution methodologies, including general multilevel solution techniques, for tackling difficult, large-scale optimization problems that arise in science and industry. Applications presented in the book include but are not limited to the circuit placement problem in VLSI design, a wireless sensor location problem, optimal dosages in the treatment of cancer by radiation therapy, and facility location. Audience: Multiscale Optimization Methods and Applications is intended for graduate students and researchers in optimization, computer science, and engineering. 
650 0 |a Mathematical optimization. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Mathematics-Data processing. 
650 1 4 |a Optimization. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Hager, William W.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Huang, Shu-Jen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Pardalos, Panos M.  |e editor.  |0 (orcid)0000-0003-2824-101X  |1 https://orcid.org/0000-0003-2824-101X  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Prokopyev, Oleg A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387510248 
776 0 8 |i Printed edition:  |z 9780387295497 
776 0 8 |i Printed edition:  |z 9781489991843 
830 0 |a Nonconvex Optimization and Its Applications ;  |v 82 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-387-29550-X  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)