Cargando…

Unconstrained Face Recognition

Although face recognition has been actively studied over the past decade, the state-of-the-art recognition systems yield satisfactory performance only under controlled scenarios. Recognition accuracy degrades significantly when confronted with unconstrained situations. Examples of unconstrained cond...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zhou, Shaohua Kevin (Autor), Chellappa, Rama (Autor), Zhao, Wenyi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:International Series on Biometrics ; 5
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-29486-5
003 DE-He213
005 20220113002014.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387294865  |9 978-0-387-29486-5 
024 7 |a 10.1007/978-0-387-29486-5  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Zhou, Shaohua Kevin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Unconstrained Face Recognition  |h [electronic resource] /  |c by Shaohua Kevin Zhou, Rama Chellappa, Wenyi Zhao. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2006. 
300 |a XII, 244 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series on Biometrics ;  |v 5 
505 0 |a Fundamentals, Preliminaries and Reviews -- Fundamentals -- Preliminaries and Reviews -- Face Recognition Under Variations -- Symmetric Shape from Shading -- Generalized Photometric Stereo -- Illuminating Light Field -- Facial Aging -- Face Recognition Via Kernel Learning -- Probabilistic Distances in Reproducing Kernel Hilbert Space -- Matrix-Based Kernel Subspace Analysis -- Face Tracking and Recognition from Videos -- Adaptive Visual Tracking -- Simultaneous Tracking and Recognition -- Probabilistic Identity Characterization -- Summary and Future Research Directions -- Summary and Future Research Directions. 
520 |a Although face recognition has been actively studied over the past decade, the state-of-the-art recognition systems yield satisfactory performance only under controlled scenarios. Recognition accuracy degrades significantly when confronted with unconstrained situations. Examples of unconstrained conditions include illumination and pose variations, video sequences, expression, aging, and so on. Recently, researchers have begun to investigate face recognition under unconstrained conditions that is referred to as unconstrained face recognition. This volume provides a comprehensive view of unconstrained face recognition, especially face recognition from multiple still images and/or video sequences, assembling a collection of novel approaches able to recognize human faces under various unconstrained situations. The underlying basis of these approaches is that, unlike conventional face recognition algorithms, they exploit the inherent characteristics of the unconstrained situation and thus improve the recognition performance when compared with conventional algorithms. Unconstrained Face Recognition is accessible to a wide audience with an elementary level of linear algebra, probability and statistics, and signal processing. Unconstrained Face Recognition is designed primarily for a professional audience composed of practitioners and researchers working within face recognition and other biometrics. Also instructors can use the book as a textbook or supplementary reading material for graduate courses on biometric recognition, human perception, computer vision, or other relevant seminars. 
650 0 |a Pattern recognition systems. 
650 0 |a Computer vision. 
650 0 |a Cryptography. 
650 0 |a Data encryption (Computer science). 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Human-computer interaction. 
650 0 |a Multimedia systems. 
650 1 4 |a Automated Pattern Recognition. 
650 2 4 |a Computer Vision. 
650 2 4 |a Cryptology. 
650 2 4 |a Data Structures and Information Theory. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Multimedia Information Systems. 
700 1 |a Chellappa, Rama.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhao, Wenyi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441938909 
776 0 8 |i Printed edition:  |z 9780387508115 
776 0 8 |i Printed edition:  |z 9780387264073 
830 0 |a International Series on Biometrics ;  |v 5 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-0-387-29486-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)