Cargando…

Nonsmooth Mechanics and Analysis Theoretical and Numerical Advances /

This book's title, Nonsmooth Mechanics and Analysis, refers to a major domain of mechanics, particularly those initiated by the works of Jean Jacques Moreau. Nonsmooth mechanics concerns mechanical situations with possible nondifferentiable relationships, eventually discontinuous, as unilateral...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Alart, Pierre (Editor ), Maisonneuve, Olivier (Editor ), Rockafellar, R. Tyrrell (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer US : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Advances in Mechanics and Mathematics, 12
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-29195-6
003 DE-He213
005 20220118161700.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387291956  |9 978-0-387-29195-6 
024 7 |a 10.1007/0-387-29195-4  |2 doi 
050 4 |a TJ1-1570 
072 7 |a TGB  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGB  |2 thema 
082 0 4 |a 621  |2 23 
245 1 0 |a Nonsmooth Mechanics and Analysis  |h [electronic resource] :  |b Theoretical and Numerical Advances /  |c edited by Pierre Alart, Olivier Maisonneuve, R. Tyrrell Rockafellar. 
250 |a 1st ed. 2006. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2006. 
300 |a XIV, 320 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Mechanics and Mathematics,  |x 1876-9896 ;  |v 12 
505 0 |a Convex and Nonsmooth Analysis -- Moreau's Proximal Mappings and Convexity in Hamilton-Jacobi Theory -- Three Optimization Problems in Mass Transportation Theory -- Some Geometrical and Algebraic Properties of Various Types of Convex Hulls -- A Note on the Legendre-Fenchel Transform of Convex Composite Functions -- What Is to be a Mean? -- Nonsmooth Mechanics -- Thermoelastic Contact with Frictional Heating -- A Condition for Statical Admissibility in Unilateral Structural Analysis -- Min-Max Duality and Shakedown Theorems in Plasticity -- Friction and Adhesion -- The Clausius-Duhem Inequality, an Interesting and Productive Inequality -- Unilateral Crack Identification -- Penalty Approximation of Painlevé Problem -- Discrete Contact Problems with Friction: A Stress-Based Approach -- Fluid Mechanics -- A Brief History of Drop Formation -- Semiclassical Approach of the "Tetrad Model" of Turbulence -- Multibody Dynamics: Numerical Aspects -- The Geometry Of Newton's Cradle -- Using Nonsmooth Analysis for Numerical Simulation of Contact Mechanics -- Numerical Simulation of a Multibody Gas -- Granular Media and Ballasted Railway Tracks Milieux Granulaires Et Voies Ballastées -- Scaling Behaviour of Velocity Fluctuations in Slow Granular Flows -- Topics in Nonsmooth Science -- Morphological Equations and Sweeping Processes -- Higher Order Moreau's Sweeping Process -- An Existence Result in Non-Smooth Dynamics -- Finite Time Stabilization of Nonlinear Oscillators Subject to dry Friction -- Canonical Duality in Nonsmooth, Constrained Concave Minimization. 
520 |a This book's title, Nonsmooth Mechanics and Analysis, refers to a major domain of mechanics, particularly those initiated by the works of Jean Jacques Moreau. Nonsmooth mechanics concerns mechanical situations with possible nondifferentiable relationships, eventually discontinuous, as unilateral contact, dry friction, collisions, plasticity, damage, and phase transition. The basis of the approach consists in dealing with such problems without resorting to any regularization process. Indeed, the nonsmoothness is due to simplified mechanical modeling; a more sophisticated model would require too large a number of variables, and sometimes the mechanical information is not available via experimental investigations. Therefore, the mathematical formulation becomes nonsmooth; regularizing would only be a trick of arithmetic without any physical justification. Nonsmooth analysis was developed, especially in Montpellier, to provide specific theoretical and numerical tools to deal with nonsmoothness. It is important not only in mechanics but also in physics, robotics, and economics. Audience This book is intended for researchers in mathematics and mechanics. 
650 0 |a Mechanical engineering. 
650 0 |a Mathematical analysis. 
650 0 |a Mathematics-Data processing. 
650 1 4 |a Mechanical Engineering. 
650 2 4 |a Analysis. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
700 1 |a Alart, Pierre.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Maisonneuve, Olivier.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rockafellar, R. Tyrrell.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387509921 
776 0 8 |i Printed edition:  |z 9781441939760 
776 0 8 |i Printed edition:  |z 9780387291963 
830 0 |a Advances in Mechanics and Mathematics,  |x 1876-9896 ;  |v 12 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-387-29195-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)