Cargando…

Branch-and-Bound Applications in Combinatorial Data Analysis

There are a variety of combinatorial optimization problems that are relevant to the examination of statistical data. Combinatorial problems arise in the clustering of a collection of objects, the seriation (sequencing or ordering) of objects, and the selection of variables for subsequent multivariat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Brusco, Michael J. (Autor), Stahl, Stephanie (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Statistics and Computing,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-0-387-28810-9
003 DE-He213
005 20220117132812.0
007 cr nn 008mamaa
008 100301s2005 xxu| s |||| 0|eng d
020 |a 9780387288109  |9 978-0-387-28810-9 
024 7 |a 10.1007/0-387-28810-4  |2 doi 
050 4 |a QA297.4 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT008000  |2 bisacsh 
072 7 |a PBD  |2 thema 
082 0 4 |a 511.1  |2 23 
100 1 |a Brusco, Michael J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Branch-and-Bound Applications in Combinatorial Data Analysis  |h [electronic resource] /  |c by Michael J. Brusco, Stephanie Stahl. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2005. 
300 |a XII, 222 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics and Computing,  |x 2197-1706 
505 0 |a Cluster Analysis-Partitioning -- An Introduction to Branch-and-Bound Methods for Partitioning -- Minimum-Diameter Partitioning -- Minimum Within-Cluster Sums of Dissimilarities Partitioning -- Minimum Within-Cluster Sums of Squares Partitioning -- Multiobjective Partitioning -- Seriation -- to the Branch-and-Bound Paradigm for Seriation -- Seriation-Maximization of a Dominance Index -- Seriation-Maximization of Gradient Indices -- Seriation-Unidimensional Scaling -- Seriation-Multiobjective Seriation -- Variable Selection -- to Branch-and-Bound Methods for Variable Selection -- Variable Selection for Cluster Analysis -- Variable Selection for Regression Analysis. 
520 |a There are a variety of combinatorial optimization problems that are relevant to the examination of statistical data. Combinatorial problems arise in the clustering of a collection of objects, the seriation (sequencing or ordering) of objects, and the selection of variables for subsequent multivariate statistical analysis such as regression. The options for choosing a solution strategy in combinatorial data analysis can be overwhelming. Because some problems are too large or intractable for an optimal solution strategy, many researchers develop an over-reliance on heuristic methods to solve all combinatorial problems. However, with increasingly accessible computer power and ever-improving methodologies, optimal solution strategies have gained popularity for their ability to reduce unnecessary uncertainty. In this monograph, optimality is attained for nontrivially sized problems via the branch-and-bound paradigm. For many combinatorial problems, branch-and-bound approaches have been proposed and/or developed. However, until now, there has not been a single resource in statistical data analysis to summarize and illustrate available methods for applying the branch-and-bound process. This monograph provides clear explanatory text, illustrative mathematics and algorithms, demonstrations of the iterative process, psuedocode, and well-developed examples for applications of the branch-and-bound paradigm to important problems in combinatorial data analysis. Supplementary material, such as computer programs, are provided on the world wide web. Dr. Brusco is a Professor of Marketing and Operations Research at Florida State University, an editorial board member for the Journal of Classification, and a member of the Board of Directors for the Classification Society of North America. Stephanie Stahl is an author and researcher with years of experience in writing, editing, and quantitative psychology research. 
650 0 |a Discrete mathematics. 
650 0 |a Mathematical statistics-Data processing. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Social sciences-Statistical methods. 
650 1 4 |a Discrete Mathematics. 
650 2 4 |a Statistics and Computing. 
650 2 4 |a Operations Research and Decision Theory. 
650 2 4 |a Operations Research, Management Science . 
650 2 4 |a Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy. 
700 1 |a Stahl, Stephanie.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441920393 
776 0 8 |i Printed edition:  |z 9780387505633 
776 0 8 |i Printed edition:  |z 9780387250373 
830 0 |a Statistics and Computing,  |x 2197-1706 
856 4 0 |u https://doi.uam.elogim.com/10.1007/0-387-28810-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)